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0. INTRODUCTION

0.1. What is it all about

We consider a system whose state is given by the solution y to a Partial Dif-
ferential Equation (PDE) of evolution, and which contains control functions,
denoted by v.

Let us write in a formal fashion for the time being. The state equation is
written

oy _
e + A(y) = B, (0.1)

where y is a scalar or a vector valued function.

In (0.1), A is a set of Partial Differential Operators (PDO), linear or
nonlinear (at least for the time being). In (0.1), v denotes the control and
B maps the ‘space of controls’ into the state space. It goes without saying
that all this has to be made precise. This will be the task of the following
sections.

The PDE (0.1) should include boundary conditions. We do not make them
explicit here. They are supposed to be contained in the abstract formulation
(0.1), where v can be applied inside the domain @ C [R® where (0.1) is
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considered (one says that v is a distributed control) or on the boundary T
of Q (or a part of it). One says then that v is a boundary control.

If v is applied at points of §2, v is said to be a pointwise control.

One has also to add initial conditions to (0.1): if we assume that ¢t = 0 is
the initial time, then these initial conditions are given by

y|t:0 = Yo, (02)

yo being a given element of the state space.

It will be assumed that, given v (in a suitable space), problem (0.1), (0.2)
(and the boundary conditions included in formulation (0.1)) uniquely defines
a solution.

It is a function (scalar or vector valued) of x € Q, t > 0, and of y and v.
We shall denote by y(v)(= {z,t} — y(z,t;v)) this solution.

We shall denote by y(¢;v) the function z — y(z,¢t;v).

Then (0.2) can be written as

y(0;v) = yo. (0.2).

Remark 0.1 The notions introduced below can be extended to situations
where the uniqueness of the solution to (0.1), (0.2) is not known. We are
thinking here of the Navier-Stokes equations in 2 C Ri, d = 3, and the
equations related to it.

We can now introduce the notion of controllability, either exact or approx-
imate.

Let T > 0 be given and let yr be a given element of the state space. We
want to ‘drive the system’ from yq at t = 0 to yr at t = T, i.e. we want to
find v such that

y(T;v) = yr- (0.3)

If this is possible for every yr in the state space, one says that the system
is controllable (or exactly controllable).

If — as we shall see in most of the examples — condition (0.3) is too strict,
it is natural to replace it by

y(T; v) belongs to a ‘small’ neighbourhood of yr. (0.4)

If this is possible, one says that the system is approximately controllable.
Otherwise the system is not controllable.

Before starting with precise examples, we want to say a few words con-
cerning the motivation for studying these problems.

0.2. Motivation

There are several aspects which make controllability problems important in
practice.



EXACT AND APPROXIMATE CONTROLLABILITY 273

Aspect 1 At a given time horizon we want the system under study to
behave ezactly as we wish (or in a manner arbitrarily close to it).

Problems of this type are common in science and engineering: we would
like, for example, to have the temperature (or pressure) of a system equal or
very close to a given value — globally or locally — at a given time. Chemical
engineering is an important source of such problems, a typical example in
that direction being the design of car catalytic converters; in this example
chemical reactions have to take place leading to the ‘destruction’ at a given
time horizon (very small in practice) of the polluting chemicals contained in
the exhaust gases (the modelling and numerical simulation of catalytic con-
verter systems are discussed in Engquist, Gustafsson and Vreeburg (1978),
Friedman (1988, Ch. 7); see also Friend (1993)).

Aspect 2 For linear systems, it is known (cf. Russell (1978)) that exact
controllability is equivalent to the possibility of stabilizing the system.

Stabilization problems abound, in particular in (large) composite struc-
tures, the so called ‘multi-body systems’ made of many different parts, which
can be considered as three-, two- or one-dimensional and which are ‘tied’
together by junctions and joints. The modelling and analysis of such sys-
tems is the subject of many interesting studies. We wish to mention here
Ph. Ciarlet and his collaborators (see, for example, Ciarlet (1990a,b) and
Ciarlet, Le Dret and Nzengwa (1989)), Hubert and Palencia (1989), Lagnese
and Leugering (1994), Simo and his collaborators (see for example, Laursen
and Simo (1994)), Park and his collaborators (see for example Park, Chiou
and Downer (1990) and Downer, Park and Chiou (1992)).

Studying controllability is one approach to stabilization (Lions, 1988a).

Aspect 3 Controllability and reversibility. Suppose we have a system which
was in a state z; at time —tp, o > 0, and which is now in the state yg.

We would like to have the system returning to a state as close as possible
to z1, i.e. yr = z1. If this is possible, it means some kind of ‘reversibility’.
What we have in mind here are environment systems; should they be ‘local’
or ‘global’ in the space variables?

Noncontrollable subsystems can suffer ‘irreversible’ changes (cf. Lions
(1990) and Diaz (1991)).

We return now to the general questions of Section 0.1, making them more
precise before giving examples.

0.3. Topologies and numerical methods

The topology of the state space appears explicitly in condition (0.4). It
is obvious that approximate controllability depends on the choice of the
topology on the state space, i.e. of the state space, itself. Actually ezact
controllability depends on the choice of the state space as well.
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The choice of the state space is therefore an obviously fundamental issue
for the theory.

We want to emphasize that it is also a fundamental issue from the nu-
merical point of view.

If one has (as we shall see in several situations) exact or approximate
controllability in a very general space (which can include elements which
are not distributions but ‘ultra distributions’) and not in a classical space
of smooth (or sufficiently smooth) functions, then the numerical approxima-
tion will necessarily develop singularities and ‘remedies’ should be based on
knowledge of the topology where theoretical convergence takes place. We
shall return to these issues in the following sections; some of them have been
addressed in, e.g., Dean, Glowinski and Li (1989), Glowinski, Li and Lions
(1990), Glowinski and Li (1990), Glowinski 1992a), where various filtering
techniques are discussed in order to eliminate the numerical singularities
mentioned above.

In the following section we shall address the question, also very general
in nature, namely: how to choose the control?

0.4. Choice of control

Let us return to the general formulation (0.1), (0.2), (0.3) (or (0.4)). If there
exists one control v achieving these conditions, then there exist in general
infinitely many other vs also achieving these conditions. Which one should
we choose and how?

A most important question is: how to choose the norm (we are always
working in Banach or Hilbert spaces) for the vs? This is related to the topol-
ogy of the state space. It is indeed clear that the regularity (or irregularity!)
properties of v and of y in (0.1) are related. Let us assume that a norm
ll|v]|| is chosen.

Once this choice is made, a natural formulation of the problem is then to
find

inf o]l (0.5)
among all vs such that (0.1), (0.2), (0.3) (or (0.4)) take place.

Remark 0.2 There is still some flexibility here, since problem (0.5) makes
sense if one replaces ||| - ||| by a stronger norm. This remark may be of
practical interest, as we shall see later on.

Remark 0.3 One can meet questions of controllability for systems depend-
ing on ‘small’ parameters. Two classical (by now) examples are:

(i) singular perturbations,

(ii) homogenization which is important for the controllability of structures
made of composite materials.

In these situations one has to introduce either families of norms in (0.5)
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or norms equivalent to ||| - ||| but which depend on the homogenization
parameter.

0.5. Relaxation of the controllability notion

Let us return again to (0.1), (0.2).

Condition (0.3) concerns the state y itself. In a ‘complex system’ this
condition can be (and will be in general) unnecessarily strong.

We may want some subsystem to behave according to our wishes. We
may also want average values to behave accordingly, etc.

A general formulation is as follows.

We consider an operator

C e L(Y,H), (0.6)

where Y is the state space (chosen!) and where H is another Banach or
Hilbert space (the observation space). Think, for instance, of C as being an
averaging operator.

Then we ‘relax’ (0.3) (respectively (0.4)) as follows

Cy(T;v) = hy, hrgiveninH (0.7)
(respectively
Cy(T;v) belongs to some neighbourhood of hr in H). (0.8)
Then we consider (0.5) where v is subject to (0.7) (respectively (0.8)).

0.6. Various remarks

Remark 0.4 For most examples considered in this article, the control func-
tion is either distributed (or pointwise) or of a boundary nature. It can also
be a geometrical one. Namely we can consider the domain 2 as variable or,
to be more precise, at least a part of the boundary of €2 is variable, and we
want to ‘move this part of the boundary’ in order to drive the system from
a given state to another one. In summary we look for controllability by a
suitable variable geometry. Problems of this type are discussed in Bushnell
and Hefner (1990); they mostly concern drag reduction for viscous flow (see
also Sellin and Moses (1989)). We shall return to this on other occasions.

Remark 0.5 Some recent events have shown the importance of stealth tech-
nologies. The related problems are very complicated from the modelling,
mathematical, numerical and engineering points of view; several approaches
can be envisaged (they do not exclude one another) such as active control,
passive control through well chosen coating materials and/or well chosen
shape, use of decoy strategies, etc. Indeed these methods can be applied
for planes and submarines as well. These problems justify a book in them-
selves and will not be specifically addressed here. We think, however, that
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various notions related to controllability including the recently introduced
concept of sentinels can be most helpful in the formulation and solution of
stealth problems. It is also worth mentioning that the ezact controllability
based solution methods for the Helmholtz equation at large wave numbers,
described in Section 6.13, have been motivated by stealth issues.

1. DISTRIBUTED AND POINTWISE
CONTROL FOR LINEAR DIFFUSION
EQUATIONS

1.1. First example
Let © be a bounded open set in R? (d < 3 in the applications).

Remark 1.1 The ‘boundedness’ hypothesis is by no means a strict necessity.
We shall also assume that I' = 9 is ‘sufficiently smooth’, which is also
not mandatory.

Let O C 2 be an open subset of §2.

Remark 1.2 We emphasize here at the very beginning that O can be arbi-
trarily ‘small’.

The control function v will be with support in O. It is a distributed control.
The state equation is given by

dy
ot
where y o is the characteristic function of O and where A is a second-order

elliptic operator, with variable coefficients. The coefficients of A can also
depend on t.

+ Ay = vxo in Q x (0,7), (1.1)

Example 1.1 A typical elliptic operator A is the one defined by

A ——iaf: O vv (1.2)
Yy = 18.’1), lauax]’ 0 Y, .
1= 1=

where, in (1.2), V = {8/0z;}%_; and where
(i) The coeflicients a;; belong to L>(Q) Vi, 5,1 < 4,5 < d, and the matrix
function (ai;)1<i j<q satisfies
d d
22 a0 > o€’ VE = {&)i, e R aeinQ,  (13)
i=1j=1

with o > 0 and || - || the canonical Euclidean norm of [R%.
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(ii) The vector Vg is divergence-free (i.e. V - Vg = 0) and belongs to
(Le()%.

(ili) We have used the dot product notation for the canonical Euclidean
scalar product of R ie.

n-€= Zméz v = {n}L,, €={&}L, e RL

=1

If the above hypothesis on the a;;s and Vg are satisfied, then the bilinear
form a(-,-) defined by

Jy 0z

d d
a(y,z) = ZZ/ 1_78 8:1: —dzx +/ VQ VyZdIL‘ (14)
i=13=1 ?

is continuous over H'(2) x HY(Q); it is also strongly elliptic over H}(Q) x
H} () since we have, from (1.3) and from V- Vg = 0, the following relation

aly,y) > o /Q IVy[2dz Vy € HY(Q). (1.5)

If Vo =0 and if a;; = aj; V4,5, 1 <4, j <d, then the bilinear form a(-, )
is symmetric.
Above, Hl(Q) and H}(Q) are the functional spaces defined as follows

HY Q) ={¢| € L*Q), dp/dx; € L} (Q) Vi=1,...,d}, (1.6)

and
H&(Q):{(pl @EHI(Q)a ¢ =0o0n F}v (1.7)

respectively. Equipped with the classical Sobolev norm

1/2
el = ([ +196P)dz) ",

and with the corresponding scalar product
(o, V) () = /Q(w/) + V- Vy)dz

H(Q) and HL(Q) are Hilbert spaces.

Since Q is bounded,
1/2
o — </ Ilede>
Q

defines a norm over H}(Q2) which is equivalent to the above H(2) norm,
the corresponding scalar product being

{o, 9} _’/QVQO'V’(/}d:IJ.
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If we denote by H~1(Q) the dual space of H}(S2), then the above operator
A is linear and continuous from H(Q) into H~1(Q) and is an ismorphism
from H}(Q) onto H71(Q). O

Back to (1.1), and motivated by the class of elliptic operators discussed in
the above example, we shall suppose from now on that operator A is linear
and continuous from H'(Q) into H~1(Q) and that it satisfies the following
(ellipticity) property

(Ap, ) > allpllin o) Ve € Hy (),
where, in the above relation, « is a strictly positive constant and where
(-, -) denotes the duality pairing between H~1(2) and H}(Q). Operator A
is symmetric over H}(Q) if
(Ap, ) = (A9, 9) Yoo, v € Hy ().
The bilinear form

{p, ¥} — (Ap,¥) : H}(Q) x H3(2) — R

will be denoted by a(-,-) and is symmetric if and only if A is self-adjoint.
In order to fix ideas and to make things as simple as possible, we add to
(1.1) the following boundary condition, of Dirichlet type,

y=0on X =Tx(0,T). (1.8)
The initial condition is
y(0) = o, (1.9)
where g is given in L2(Q).
We shall assume that
v e LYHO x (0,T)). (1.10)

We emphasize that this is a choice which is by no means compulsory. We
shall return to this. We begin with (1.10) since it is the simplest possible
choice, at least from a theoretical point of view.

It is a well known fact (cf. for instance Lions (1961), Lions and Magenes
(1968)) that (1.1), (1.8), (1.9) admits a unique solution (denoted sometimes
as t — y(t;v), with y(¢;v) = z — y(zx,t;v)) which has the following proper-
ties

y € L*(0,T; Hg(Q)), 9y/0t € L*(0,T; HH()), (1.11)
y is continuous from [0,T] — L?(£). (1.12)

We are going to study the (approzimate) controllability of problem (1.1),
(1.8), (1.9).
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1.2. Approximate controllability

As a preliminary remark, we note that eract controllability is going to be
difficult. Indeed, if we assume that the coefficients of A are smooth (respec-
tively real analytic) then the solution y is, at time T > 0, smooth outside O
{respectively real analytic outside O).

Therefore if yr is given in L2(Q) - which is a natural choice if we take
(1.12) into account — the condition of exact controllability

y(T) =yr

will be, in general, impossible.

This will become more precise below. For the time being, we start with
the approzimate controllability. In that direction a key result is given by the
following

Proposition 1.1 When v spans L%(O x (0,T)),y(T;v) spans an affine
subspace which is dense in L%(2).

Proof.

(i) Let Yy be the solution to (1.1), (1.8), (1.9) for v = 0. Then y(T;v) —
Yo(T) describes a subspace of L2(2) and we have to show the density of
this subspace. It amounts to proving the above density result assuming
Yo = 0.

(i) We then apply the Hahn-Banach theorem, as in Lions (1968) (so that
the present proof is not constructive).

Let us consider indeed an element f € L?(Q) such that

(¥(T;v), f)r2 ) = 0 Yo € L*H(O x (0,T)). (1.13)

We introduce 2 as the solution to
- %—f«FA*'(/J:Oian (0,7), (1.14)

where A* is the adjoint operator of A and where v also satisfies
Y =0on%, (1.15)
Y(z,T) = f(). (1.16)
Then multiplying (1.14) by y(v) and applying Green’s formula, we obtain
W@, Doy = [ gwdzat (1.17)
0x(0,T)

Therefore (1.13) is equivalent to
¥ =0in O x (0,T). (1.18)
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It then follows from the Mizohata (1958) uniqueness theorem, that
Y =0in Q x (0,T) (1.19)
so that f = 0, which proves the proposition. 0O

Remark 1.3 Mizohata’s theorem supposes that the coefficients of A are
sufficiently smooth (cf. also Saut and Scheurer (1987)).

Remark 1.4 A similar density property holds true if v spans, say, the space
of those functions which are C* and with compact support in O x (0,T).
This fact gives a lot of flexibility to the formulation which follows.

Remark 1.5 Suppose we would like to drive the system at time T ‘close’
to a state yr containing some singularities. To fix ideas (but there is also
much flexibility here) suppose that

yr € H1(Q). (1.20)
Then it may be sensible to admit fairly general controls, such as
v e L¥0,T; HY(0)) (1.21)

or even more general ones. We shall not pursue these lines here.

1.3. Formulation of the approximate controllability problem

As we have seen in Section 1.2, we do not restrict the generality by assuming
that yo = 0 (it amounts to replacing yr by yr — Yo(7)).
Let B be the unit ball of L(2). We want

y(T;v) to belong to yr + 8B, 3 > 0 (arbitrarily small). (1.22)

According to Proposition 1.1 there are controls vs (actually infinitely many
such vs) such that (1.22) holds true. Among all these vs, we want to find
those which are solutions to the following minimization problem:

inf 3 // v2dzdt, wve L*0O x(0,T)), y(T;v) € yr + BB. (1.23)
v Ox(0,T)

In fact problem (1.28) admits a unique solution. We want to construct
numerical approzimation schemes to find it.
Before we proceed, a few remarks are now in order.

Remark 1.6 All that is stated above is true with
T > 0 arbitrarily small,

O C Q2 arbitrarily ‘small’,
B >0 also arbitrarily small.

Letting 8 — 0 will be, in general, impossible. This will be made explicit
below.



EXACT AND APPROXIMATE CONTROLLABILITY 281

Remark 1.7 Choices other than (1.23) are possible. The ‘obvious’ candi-
dates are

inf ||vl| L1 ox (0.7, v € LN(O x (0,T)), y(T;v) €yr + 6B,  (1.24)
or

inf o]z (ox(0my), v € LT(O X (0,T)), y(T;v) €yr+ BB (1.25)

Other — more subtle — choices may be of interest. We shall return to this
below.

1.4. Dual problem
We are going to apply the Duality Theory of Convex Analysis to problem

(1.23).
We define the following functionals and operator
Fi(v) = %// v? dz dt, (1.26)
Ox(0,T)
_ 0 for fin L%Q), fe€yr+ BB
B(f) = { +00 otherwise, (1.27)
(F3 is a ‘proper’ convex functional)

Lv = y(T;v), (1.28)

so that
L € L(L*(O x (0,T)); L*(Q)). (1.29)

Then problem (1.23) where the infimum is taken over all vs satisfying
(1.22) is equivalent to the following minimization problem

inf . 1.30
veL2(g1x(O,T))[F1(v)+F2(Lv)] (1:30)

We can now apply the duality theorem of W. Fenchel and T.R. Rockafellar
(cf. Ekeland and Temam (1974)). It gives

v o o F1O) + Ba(Lo)) = = inf (YL )+ F5(=f)) - (131)

where F is the conjugate function of F; and L* is the adjoint operator of L.
We have

Ffv) = sup [(v,0) = F1(9)] = F1(v),
DELZ(Ox(0,T))

F5(f) = sup (f,f)=(f,yr)+BIf),
feyr+6B

where || f|| = norm of f in L?(2) and where (f,yr) = scalar product of f
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and yr in L?(Q). We now compute L*. Given f in L%(Q), we define ¥ as
the solution to (1.14)—(1.16).
Then, one verifies easily (actually one uses (1.17)) that

L*f = vYxo, Xo = characteristic function of O. (1.32)
Therefore (1.31) gives

F; Fy(L
v€L2((’)><(0T))[ 1(v) + Fo(Lo)]

- inf [//OX(OT«/) dzdt — (fyr) + BIFI|,  (1.33)

fEL2 Q)

where 1,@ s the solution to
W

Bt

Minimizing the functional on the right-hand side of (1.33), where the state
function is now given by (1.34), is the dual problem.

Remark 1.8 Problem (1.33), (1.34) admits a unique solution. Let f denote
this solution. Then the solution u to problem (1.23) is given by

where 9 is the solution to (1.34) corresponding to f.

+ A% =0in Q2% (0,T), ¢(T)=f, % =0o0nZX. (1.34)

Remark 1.9 We now want to give constructive algorithms for finding the
solution to the dual problem, hence for the solution to the primal problem
(using (1.35)).

Remark 1.10 As is classical in questions of this sort, relation (1.33) leads
to lower and upper bounds, hence to some error estimates.

1.5. Direct solution to the dual problem
Given f in L*(Q), let us set
[f] = ¥l L2 ox0,1))- (1.36)

We observe that [f] is a norm on L?(2). Indeed, if [f] = 0 then ¢ = 0 in
O x (0,T), hence (according to the proof of Proposition 1.1) f = 0 follows.

Let us now introduce a wvariational inequality expressing that f realizes
the minimum on the right-hand side of (1.33).

It is given by

[ wti=v)dedi=(yr, f-D+BIFI-BIfI 2 0¥F € L*@), (137)
Ox(0,T)

where 1 is the solution to (1.34) corresponding to f
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Using (1.36), this is equivalent to
£ f =1~ =D+ BIAI - BIFI 2 0Vf € L2(Q).  (1.38)

Let us introduce the ‘adjoint’ state function y defined by

%% + Ay =¢Yxo in 2 x (0,T), y(0)=0, y=0o0nZX. (1.39)
Multiplying the first equation in (1.39) by ¢ — ¢ gives
JL.  w@-v)dedt= @), f- 1. (1.40)
Ox(0,T)
Let us set
y(T) =y(T; f) = Af, (1.41)

where, given f, one computes ¢ by (1.34) and then y by (1.39).
Then (1.37) (or (1.38)) can be written

(Af, f=F) =@, f = )+ BIFI = BlIfl| > 0Vf e LA(). (1.42)

Remark 1.11 The equivalence between problems (1.38) and (1.42) relies
on the following relation

[f, /1= (Af, )V, f € LA(9). (1.43)
Remark 1.12 Operator A satisfies
A€ L(LA(Q); L*(Q)), A=A*, A>0. (1.44)

It follows from (1.44) that the (unique) solution to problem (1.42) is also
the solution to

_inf [2(Af, £) = (v, £) + BIFII)- (1.45)
feL(Q)

We can summarize by the following

Theorem 1.1 (i) We have the identity

inf 3 / / v? dx dt
y(T;v)eyr+6B ox(0,T)

—_ 3 1 2 _ £ 3
= int 3 f[ o Bzt )], (e

feLxa
where ¥ is given by (1.34).

(i) The unique solution f of the dual problem is the solution of (1.45)
where A is defined by (1.41), i.e. Af = y(T) where
oY

—5 FAY=0mQx (0,T), ¥(T)=f ¢=0on% (1.47);
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%?ti + Ay = ¥xo in 2% (0,T), y(0) =0,y =0 on E. (1.47),

(iil) The unique solution u of (1.46) is given by
u = Yxo. (1.48)

Application As a corollary — which we have to make precise! — one obtains
the general principle of a solution method, namely

(i) Guess the solution f of problem (1.46).
(i) Compute the corresponding value of .

(iii) Use an iterative method to compute the inf in f, using the right-hand
side of (1.46) or using (1.45).

This will be the task of Section 1.8. Before that several remarks have to
be made.

Remark 1.13 The optimal control v — with respect to the choice of

// vidzdt
Ox(0,T)

as the quantity to minimize — is given by (1.48), where ¢ is the solution
of the parabolic equation (1.47);. Therefore 9 is smooth (the smoother the
coefficients of A, the smoother ¢ will be). In other words, u is smooth.

(I

This remark ezcludes the possibility of finding an optimal control of the
‘bang-bang’ type.

Of course trying to find an optimal control satisfying some kind of bang-
bang principle is by no means compulsory! But knowing in advance that
such a property holds true may be of some help.

The first idea which comes to mind is to replace

lvll 2o x0,7)) bY [Vl Los(0x(0,7));3
this possibility will be discussed in Section 1.7.

Remark 1.14 (Further comments on exact controllability.) Exact control-
lability corresponds to 8 = 0 in (1.45), or, equivalently, to

n;fw ~ (yr, f)), f € LX(Q). (1.49)

Let us denote by L/(\Q) the completion of L2(Q) for the norm [f]. Due

to the smoothness properties of parabolic equations, L2(2) will contain (ex-
cept for the case, without practical interest, where O = Q) very singular
distributions and even distributions of infinite order (outside @), i.e. ultra-
distributions.
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Then (1.49) admits a unique solution fq iff

PR

yr € (LA(Q)) (1.50)

the dual of L2(Q2), when L?(Q) is identified with its dual. It means that
exact controllability is possible iff y7 belongs to a ‘very small’ space, namely
(L*(Q))".

We also have the following convergence result: let fz be the unique solu-

——

tion to (1.46), then fg — fo in L2(Q) as B — 0 off yr € (L2(Q))'.

Remark 1.15 Another way of expressing this is to observe that A is an

isomorphism from L?(2) onto its dual. This is closely related to the Hilbert
Uniqueness Method (HUM) as introduced in Lions (1988a,b).

1.6. Penalty arguments

In problems where there are many constraints of a different nature, penalty
arguments can be used in a very large number of ways.
In the present section we are going to ‘penalize’ the constraint

y(T;v) belongs to yr + 8B. (1.51)

This can also be done in many ways!

One possibility is to introduce a smooth functional over L?(Q2) which is
zero on the ball yr + 8B, and > 0 outside the ball; let u(-) be such a
functional. Then one can consider

inf [% // v? dz dt + ku(y(T;v))|,
v Ox(0,T)

ve L0 x(0,T)), k>0 - large’. (1.52)
Another possibility is the following. One introduces
k
Ry =} [[ wtdedt+ ST —urlt, (159
0x(0,T) 2
where k > 0 is ‘large’ and where || - || denotes the L%(Q) norm.
Then one considers the problem
inf J(v), ve€ L0 x (0,T)). (1.54)

This problem admits a unique solution, denoted by uy. Let us verify the
following result:

{ There exists k large enough such that the solution u; of (1.54) (1.55)

satisfies [|y(T5ux) — yrll < 6.

Before proving (1.55) let us make the following remark.
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Remark 1.16 It follows from (1.55) that uy is, for k large enough, one
control such that y(T;ux) € yr+ BB. Of course it has no reasons to coincide
with the solution ug of

inf%// videdt, ve L0 x(0,T)), y(T;v)€yr+ BB.
Ox(0,T)

Remark 1.17 The proof to follow is not constructive, therefore it does not
give a ‘constructive choice’ for k which is a difficulty since § ‘disappears’ in
problem (1.54). We make below a constructive proposal for the choice of k.

Remark 1.18 Of course, given k, the optimality system for problem (1.54)
is quite classical. One obtains

%%wLAy:q/JXoian(O,T), y(0)=0, y=0o0n X%,

The optimal control u; is given by ¥ xo where ¥ is the solution obtained
by solving (1.56).

It is worth noticing that if one denotes the function %(T) by f, then f
satisfies the functional equation

;I +A)f =yr, (1.57)
where operator A is still defined by (1.41) (see Section 1.5).

(1.56)

Proof of (1.55). Given € > 0, there exists a control w such that
ly(T;w) —yrll <. (1.58)

This follows from the approximate controllability result and it is not con-
structive.

Then
2

k
To(uz) < %// wdedi + 2 (1.59)
Ox(0,T) 2
so that
lo(Tsu) —urlP <3 [ widsdre (1.60)
k J Jox(,1)

We choose ¢ = (3/+/2, then w is chosen so that (1.58) holds and we choose

k such that
1
—// w?drdt < 162
k JJox(,1)

Then (1.60) implies (1.55). O
Remark 1.19 In general (i.e. for y7 generically given in L%(Q)) the above
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process does not converge as k — +00 (otherwise it would give exact con-
trollability at the limit!).

Remark 1.20 It will remain to solve (1.56) if we have a way to choose k.
This is what we propose now.

Duality on Ji(v):
We introduce

Fi(v) = 3 v dedt, Fp(f) = 3kl|f —yrl® Lv=y(T;v). (1.61)
Ox(0,T)

We have
inf Je(v) = iI&f(Fl(U) + Fy(Lv))

and using duality as in previous sections (and with similar notation), we
obtain

i) == nf (F(L°)+ Fi (=) (1.62)

This leads to the following dual problem:
Let ¥ be defined by

—%_f’LA*‘&:OinQX(O,T), W(T)=f, =000 (163)

Then the dual problem is to find

. X . 1,
in [%// ¢2dxdt—(f,yT)+-—||fn2], (1.64)
Q) Ox(0,T) 2k

feLr?(

or, equivalently,

ot [YAF.F) = Goum) + LI
e [HAF D) = o) + g A1), (1.65)

which is in turn equivalent to the linear problem (1.57). Problem (1.57),
(1.65) has the following variational formulation

f € L¥(Q) Vf € L¥(Q), we have
. 1 . .
/Q(Af)fda:+E/fodx=/Qnydx.
Taking f = f in (1.66), we obtain
[nsdz+ L1 = [ vrfde. (1.67)
Q Q

We now compare problem (1.64), (1.65) to the problem (1.42), (1.45);
it follows from Sections 1.4 and 1.5 that the solution f* of (1.42), (1.45)

(1.66)
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satisfies the following variational inequality

f* € L3(Q) Vf € L*(Q), we have

. . R (1.68)
LA = e+ BIFI-BIN 2 [ vef - £ da,
Q Q
which implies in turn (take f =0 and f = 2f* in (1.68)) that
L A5)5 a4 B17 = (wr, 7). (1.69)
Suppose now that f = f*; it follows then from (1.67), (1.69) that
1 9
LA = 151,
ie. if f#0,
k=II£I/B. (1.70)

We propose consequently the following rule:
After a few iterations, where % is given a priori, we take k variable with
n and defined by

b = 5157 (1.71)

Remark 1.21 It follows from Remark 1.18 and from (1.65) that problem
(1.64) is equivalent to (1.57), namely

(k7N +A)f = yr (1.72)

On the other hand, it follows from Section 1.5 that the minimization
problem on the right-hand side of (1.33) is equivalent to the ‘equation’ (it
is indeed an inclusion).

yr € BOj(f) +Af, (1.73)

where 0j(-) denotes the subgradient (see e.g. Ekeland and Temam (1974)
for this notion) of the convex functional j(-) defined by

i) = Ifllz2 ) Vf € LA(Q). (1.74)

Intuitively, problem (1.72) being linear is easier to solve than (1.73) which
is nonlinear, nondifferentiable, etc. In fact, we shall see in Section 1.8 that if
one has a method for solving problem (1.72), it can be used in a very simple
way to solve problem (1.73).

1.7. L* cost functions and bang—-bang controls

We consider the same ‘model’ problem as before, namely

5}
a—‘ltjﬁ-Ay:UXo inQ2x(0,T)=@Q, y(0)=0, y=0o0n . (1.75)
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Given T > 0 and given yr € L%(2), we consider those control vs such
that

y(T) € yr + BB, (1.76)

where, in (1.76), 3 is a positive number and B is the unit ball of L?().
Next, we consider the following control problem

inf ||v|| Lo (0 x(0,1))5 (1.77)

where v is subjected to (1.75), (1.76).
A few remarks are in order.

Remark 1.22 This remark is purely technical. The space described by
y(T;v) is dense in L?(2) when v spans the space of the C* functions with
compact support in O x (0,7T), so that the infimum in (1.77) is always a
finite number, no matter how small (> 0) is.

Remark 1.23 The choice of the L* norm in (1.77) is less convenient than
the choice of the L? norm, but is not an unreasonable choice. It leads to
new difficulties, essentially due to the nondifferentiability of the L norm
(and of any power of it). We explain below what to do in order to proceed

with this type of cost function, which leads to bang-bang type results (see
below).

Remark 1.24 Of course, one can more generally consider

inf [|v]| s (ox(0,1))» (1.78)
where s is chosen arbitrarily in [1, +00], i.e.
1<s< 400. (1.79)

Indeed, if s € (1, +00) it is more convenient to use v — 5_1”U||28((9><(O,T))
as the cost function, since it has better differentiability properties and does
not change the solution of problem (1.78).

Let us consider the case s = 1; then for any v in L*(Ox (0, T)) the function
y(T;v) belongs to L?(Q) if and only if d < 2 (see, e.g., Ladyzenskaya,
Solonnikov and Ural’ceva (1968) for this result). Actually, this does not
modify the statement of problem (1.78) (with s = 1), since if d > 2, we
can always restrict ourselves to those controls v in L'(O x (0,T)), such that
y(T;v) € L3(Q).

Remark 1.25 There is still another variant that we shall not consider in
this article, namely to replace in (1.76) the unit ball B of L%(Q) by the unit
ball of L"(Q2). We refer to Fabre, Puel and Zuazua (1993) for a discussion
of this case.

Remark 1.26 For technical reasons (the explanation for which will appear
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later on) we are going to consider the problem in the following form

inf 40|30 0x (0,7)) (1.80)
or

inf%“”||2Ls(0x(o,T))’ (1.81)
with v subjected to (1.75), (1.76)
Synopsis In the following, we propose an approximation method for prob-
lem (1.80), which leads to: (i) numerical methods; and (ii) connections with
one result from Fabre et al. (1993).

The results in the above reference have been found by a duality approach,

which leads — among other things — to some very interesting formulae; we
will present these formulae.

Approximation by penalty and regularization I We begin by consid-
ering the following problem

inf J; (v) (1.82)
where, in (1.82), the cost function JZ(-) is defined by
JE () = 4llvll. + klly(Tsv) = yrlle(q), (1.83)

and where in (1.83), L*® stands for L*(O x (0,7T)) and y(-,v) is the solution
of (1.75). The idea here is to have k(> 0) large to ‘force’ (penalty) the final
condition y(T';v) = yr, and to have s large, as an approximation of s = +o00
(regularization). Problem (1.82) has a unique solution and we are going to
write the corresponding optimality conditions. We can easily verify that

d
—(Lllv + A9)|2) |amo = |lv 2:3// v|v[* "2 dzdt Vv, o € L°. (1.84
dA(le IZ:)[a=0 = ||vlI7 ox(o.1) |v] (1.84)

The quadratic part of J(-) gives no problem and we verify easily that if we
denote by VJ(-) the derivative of Ji(-) we have

VJi(w) € L* Vv € L®, with s' = s/(s — 1), (1.85)
and, from (1.84),

// VJi(v)odzdt = |v]|%7 // v|v|s 25 dzx dt
0x(0,T) ox(0,T

- // ptdzx dt (1.86)
0x(0,T)

where, in (1.86), p is the solution of the adjoint state equation

Yv,0 € L°,

Jdp
— 5 tAP=0Q, p(T)=kyr —y(T;v)), p=0on X, (1.87)
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with, in (1.87), y(T';v) obtained from v by (1.75); above the exponent s’ is
the conjugate of s, since 1/s +1/s' = 1.

Let us denote by u the solution of problem (1.82); it satisfies V.Ji(u) = 0,
which implies (from (1.86)) that

lullZ *ulul*~? = pxo, (1.88)

where, in (1.88), we still denote by p the particular solution of the adjoint
system (1.87) corresponding to v = u. Relation (1.88) is equivalent to

v = [|pll3-* plpl* ~*xo0. (1.89)

We have therefore obtained the following optimality system for problem
(1.82):

%

+ Ay = |Ip|| %% plpl* 2x0 in Q, y(0) =0, y=0on %,
atap (1.90)
5 1 A'p=01in Q, p(T) = k(yr —y(T)), p=0on .

The above result holds for any fixed s arbitrarily large and the same
observation applies to k.

The optimality system (1.90) has a unique solution and the optimal control
u 15 given by relation (1.89).

Approximation by penalty and regularization II Suppose now that
s — 400, i.e. s — 1 in (1.90), the parameter k being fixed. We make the
assumption (actually it is a conjecture; see Fabre et al. (1993) for a discussion
of this issue) that

p#0ae inQx(0,7T) (1.91)
(except if p = 0). Then the limit of (1.90) is given by
a . .
—8% + Ay = ||p||1signpxe in @, y(0) =0, y=0o0n %,
(1.92)
0 . ,
—5, +A'=0inQ, p(T) = k(yr — y(T)), p=0on %.

Remark 1.27 We observe that (1.92) has been obtained by taking the limit
in (1.90) as s — +o00. This convergence result is not difficult to prove if we
suppose that (1.91) holds; see Fabre et al. (1993), for further details and
results.

Remark 1.28 It follows from (1.92) (or (1.89)) that the optimal control u
is given by

u = ||p(| 1sign pxo, (1.93)

which is a bang-bang result.



292 R. GLowiInsKI AND J.L. LIONS

Remark 1.29 What has been discussed above is simple thanks to the choice
of (1.80) as control problem, which leads in turn to the reqularized and
regqularized—penalized problems (1.81) and (1.82). This approach and the
corresponding results are closely related to those in Fabre et al. (1993); in
fact, these authors start from the dual formulation which is discussed below.

Dual formulation I We can use duality as in the L? case. We obtain
therefore the following duality relation

inf [31oll3s + $ly(T50) — yrlfego)]

. - 1 . .
= _“}_f el + ﬂ”f“%?(a) = (yr, 2| (1.94)
where, in (1.94), ¥ is obtained from f via the solution of
ob
—E'*‘Aw:OIHQ» v(T)=f, y=00nX. (1.95)

As already mentioned in Remark 1.29, Fabre et al. (1993), start from the
formulation (1.94), (1.95) directly with s’ = 1; this has to be understood in
the following manner: one considers as the primal problem

A 1., .
inf (31913 + o2 1f 1 eq) — 1.96
jema ¥l + S fllzay = (wrs ez (1.96)
with 9 still defined by (1.95); then the dual problem is

Jnf Bz + 3ElY(T50) = yrliza) (1.97)

Dual formulation IT What we want to achieve is (1.76), namely
y(T;v) € yr + BB.

Using the penalized formulation one obtains y(7T;v) ‘close’ to yr. In order
to have y(T';v) satisfying (1.76) one has to choose k in a suitable fashion.
This can be done as follows.

Observe first that, from (1.94), the dual problem of problem (1.82) is
given by

. 1. .
inf 319020 + = flk2q — ] 1.98
Fel?(@) [2“10” o+ 5zl T2 = (v Nz (1.98)

Let us denote by f the solution of problem (1.98); it satisfies (with obvious

notation) the following variational equation in L2(Q):

f e L¥(Q) Vf € L%(Q) we have

2—s' s'=2 , % 1 N . A (199)
W [ 1 200wt L [ ffdr= [ rfan
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which implies in turn that

1
[ell7. + E“f”%?(ﬂ) = (y1, f)r2(0)- (1.100)
Consider now the control problem
igf;nvn%,, v satisfies (1.75), (1.76). (1.101)

Its dual problem is given by

cinf 3112, + Bl fll ey — rs £z (1.102)
feL?(Q)

Denote by f* the solution of problem (1.102); it satisfies the following
variational inequality in L?(Q)

f* e L¥Q) Vf € L) we have
x[|2—s' *1s'=2 1k T %
W [ o W20 = 0 dm et (1.103)

+B81F 2y — B N2y = (wrs f = F9)120)-
Taking successively f = 0 and f = 2f* in (1.103), we obtain

1™ 30 + BIF N2y = (urs £*) L2()- (1.104)

The positive member § being given, we look for k such that f = f* which

implies in turn that ¢ = ¥* and therefore that the primal problems (1.82)

and (1.101) have the same solution u(= ||1/)[|i:,s'1/)|wls"2xo). Suppose that
f = f*, it follows then from (1.100) and (1.104) that

1
E||f||%2(n) = BlIfllL2(@)-
If || fllL2¢) # 0 we thus have

k= fllp2)/B- (1.105)

From (1.105) we have the following approach to solving problem (1.102)
using the solution methods for problem (1.98):

Suppose that we have an iterative procedure producing f!, f2,... f", ...
we shall use a constant parameter & for several iterations and then a variable
one defined by

k= 1l 20y /8 (1.106)
We shall conclude this section with the following remark.

Remark 1.30 A control problem closely related to those discussed above is
the one defined by

viencf, sly(Tsv) — ?JT”%z(Q)» (1.107)
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where, in (1.107), Cy is the closed convez subset of L™(O x (0,T)) defined
by

Cr={v|veL®Ox(0,T)),v(z,t)] <C ae in Ox(0,T)}. (1.108)

In fact, problem (1.107) is fairly easy to solve if we have solution methods
for problem (1.82) with s = 2; such methods will be discussed in the following
Section 1.8, together with applications to the solution of problems such as
(1.107).

1.8. Numerical methods

1.8.1. Generalities. Synopsis.

In this section, we shall address the numerical solution of the approrimate
controllability problems discussed in the preceding sections (the notation of
which is kept); we shall start our discussion with the solution of the following
two fundamental control problems:

First control problem This is defined by

inf %// v? dx dt (1.109)
vels 0x(0,T)
with Uy defined by
Us = {v]ve L0 x (0,T)), y(T) € yr + BB}, (1.110)

where, in (1.110), the target function yr is given in L*(Q), B is the unit ball
of L?(2), B is a positive parameter and where the state function y is the
solution of the following parabolic problem

%?% + Ay = vxo in Q = Q x (0,T), (1.111)
y(0) = yo(€ L*(Q)), (1.112)
y=00on¥=Tx(0,T). (1.113)

Control problem (1.109) has a unique solution.

Second control problem This is defined by

k
inf l// 2dzdt + ~ly(T) — yrllee|, (1114
veL2(OX(0.T)) [2 oxom . + W) = wrlizy .

where, in (1.114), k is a positive parameter and y is still defined by (1.111)-
(1.113).
Control problem (1.114) has a unique solution.

The solution of the control problems (1.109) and (1.114) can be achieved
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by methods acting directly on the control v; these methods have the ad-
vantage of being easy to generalize (in principle) to control problems for
nonlinear state equations as shown in future sections. In the particular case
of problems (1.109) and (1.114) where the state equation (namely (1.111)-
(1.113)) is linear and the cost functions quadratic, instead of solving (1.109)
and (1.114) directly, we can solve equivalent problems obtained by applying
Convez Duality Theory, as already shown in Sections 1.5 and 1.6. In fact,
these dual problems can be viewed as identification problems for the final
data of a backward (in time) adjoint equation, in the spirit of the Reverse
Hilbert Uniqueness Method (RHUM) introduced in Lions (1988b); from our
point of view, these dual problems are better suited to numerical calculations
than the original ones (for a discussion concerning the exact and approxi-
mate boundary controllability of the heat equation, which includes numerical
methods, see Glowinski (1992b) and Carthel, Glowinski and Lions (1994)).

It follows from Section 1.5 (respectively Section 1.6) that the dual prob-
lem to (1.109) (respectively (1.114)) is defined by the following variational
mequality

f € L} () Vf € L*(R) we have
(Af, f - Hreq +Aﬂ||f”L2(Q) = Bl flizz ) (1.115)
2 (yr —Yo(T), f — e
(respectively by the following linear equation
(k' T+ A)f = yr — Yo(T)), (1.116)

where in (1.115), (1.116), operator A is the one defined in Section 1.5, and
where the function Y is defined by

9Yp

Y (0) = yo, (1.118)
Yo=0o0n . (1.119)

In the following subsections we shall discuss the numerical solution of
problem (1.116) by methods combining conjugate gradient algorithms to fi-
nite difference and finite element discretizations. We shall then apply the
resulting methodology to the solution of nonlinear problem (1.115).

1.8.2. Conjugate gradient solution of problem (1.116).

From now on we shall denote by (-,-) and || - || the canonical L?(Q)-
scalar product and L2(Q)-norm, respectively. The various approximations
of problem (1.116) can be solved by iterative methods closely related to the
algorithm discussed in this section.
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Writing (1.116) in variational form we obtain

f e LX), ) o
k7NE P+ (Af ) = (yr — Yo(T), f) VS € LA(Q).
From the symmetry, continuity and positive-definiteness of the bilinear

form {f, f} — (Af, f), the variational problem (1.120) is a particular case
of the following general problem

wevy,
a{u,v) = L(v) Yv € V,

(1.120)

(1.121)

where:

(i) V is a real Hilbert space for the scalar product (-,-) and the corre-
sponding norm || - ||

(ii) a:V xV — Ris bilinear, continuous, symmetric and V-elliptic (i.e.
Ja > 0 such that

a(v,v) > allv]|? Vv € V).
(iii) L:V — Ris linear and continuous.
If properties (i) to (iii) hold, then problem (1.121) has a unique solution
(for this result which goes back to Hilbert, see e.g. Lions (1968), Ekeland
and Temam (1974), Glowinski (1984)).

Problem (1.121) can be solved by the following conjugate gradient algo-
rithm:

u® €V is given; (1.122)
solve
eV, (§°v)=a’v)—Lv) Vv eV, (1.123)
and set
w’=¢% O (1.124)
For n >0, u™, g", w™ being known, compute u™*1, g"t1 w"*! as follows.
on = llg"I1*/a(w™, w™) (1.125)
and take
w =" — g ™. (1.126)
Solve
g"tlev, (g™ o) = (g%, v) — ena(w™,v) Yo € V, (1.127)
and compute
= g™ 1/ llg™ 1%, (1.128)
wt = g™ 4w, (1.129)
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Don=n+1 and go to (1.125).
Concerning the convergence of algorithm (1.122)—(1.129) it can be shown
(cf. Daniel (1970)) that

-1\
™ = ull < elju® - u| (%) , (1.130)
a

where u is the solution of (1.121), and where the condition member v, of
a(-,-) is defined by v, = ||A|[||A7!||, where A4 is the unique operator in
L(V,V) defined by

a(v,w) = (Av,w) Yv,w € V.
Application to the solution of problem (1.116) Before applying algo-
rithm (1.122)-(1.129) to the solution of problem (1.116), let us recall the

definition of operator A; it follows from Section 1.5, relation (1.41), that
operator A is defined by

Af =(T), (1.131)

where the function ¢ is obtained from f as follows.
Solve the backward equation

g
—a—lﬁ)ﬁ-A*w:Oin Q, v=0o0nZX, ¥(T)={, (1.132)
and then the forward equation
0
a—f FAp=9YxoinQ, ¢=0o0nY, p(0)=0. (1.133)

Applying now algorithm (1.122)-(1.129) to problem (1.116), we obtain
the following iterative method (of conjugated gradient type);

fYs given in L*(Q); (1.134)
solve first
M’ o : 0 0 0
—§+Ap=0mQ, p’=0o0on X%, p°(T) = f", (1.135)
and set
uw® = pOx0. (1.136)
Solve now
ay° 0 0, 0 0
W-%—Ay =u inQ, y =0o0nX, y(0)=uy, (1.137)
compute
¢® = k70 +4%(T) — yr, (1.138)
and set

w=¢% 0O (1.139)
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Then, for n > 0, assuming that f™, g™, w™ are known compute f*+1, g"t1,

w™t! as follows.
Solve
" | e : _ _
~ +AP"=0mQ, p"=00n X, p"(T)=uw" (1.140)
and set
" = pxo. (1.141)
Solve
agt +A=u"in @, §g"=0o0nX% g"(0)=0 (1.142)
and compute
§" = k" tw™ + g™ (T), (1.143)
on = llg" 1P/ (5", w™), (1.144)
and then
=" - gpu, (1.145)
gt =" - ong™ (1.146)

If g™ /g% < e, take f = f**! and solve (1.132) to obtain u = ¥xo,
the solution of problem (1.114); if the above stopping test is not satisfied,
compute

= g" 1%/ g™ 1%, (1.147)

and then

w't = g™t 4w O (1.148)

Don=n+1 and go to (1.140).
Remark 1.31 It is fairly easy to show that
I T+ Al = ,7" + (AL (BT +A)7H =k,

implying that the condition number of the bilinear from in the left-hand
side of (1.120) is equal to ||A||k + 1. It follows from this result, and from
(1.130), that the number of iterations of algorithm (1.134)—(1.148) necessary
to obtain convergence varies like vklne=! for large values of k.

1.8.3. Time discretization of problem (1.116).

The crucial point here is to approximate properly the operator A defined
by (1.131)—(1.133) in Section 1.8.2. Assuming that T is bounded and that
operator A is independent of ¢, we introduce a time discretization step,
defined by At =T /N, where N is a positive integer. Using an implicit Euler
time discretization scheme, we approximate (1.132) by

PNt = fe L¥(Q); (1.149);
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then, assuming that Y"1 is known, we solve the following Dirichlet problem
form=NN-1,...,1,
wn-{-l _ wn
At

where Y™ ~ PY(nAt)(Y(nAt) : ¢ — ¥(x,nAt)). Next, using similar notation,
we approzimate (1.133) by

+ AW =0 Q, ¢Y*"=00nT, (1.149),

% =0, (1.150);

n—1

then assuming that ¢ 18 known, we solve the following Dirichlet problem

form=1... N,

(pn _ ‘,0”_1
QA + A" =Y xom Q, " =0o0onT. (1.150)9
Finally, we approzimate A by At defined by

A =N O (1.151)

From the ellipticity properties of A and A* (see Section 1.1), the Dirichlet
problems (1.149), and (1.150), have a unique solution; we furthermore have
the following

Theorem 1.2 Operator A®¢ is symmetric and positive semi-definite from
L%(Q) into L2(Q).

Proof. Consider a pair {f, f} € L2(Q) x L*(Q). We have then
(A8, ) = [ NN da. (1.152)
Q
We also have, since ¢° = 0,

n+1 o n _ ,n—1 o
AtZ[ (—-—W o~ )w" (———“’ _~ )]w%’v“. (1.153)

Integrating (1.153) over Q and taking (1.149), into account we obtain
(A8t f) = [ M
Q

N ~ - N ~
= At) [ (A" -y AP dz + ALY [ yryn
thI/Q(w P — P Ap")dz + tm/oww dr

N ~
— A n, .n .
t,;/ow Y™ dzx, (1.154)

which completes the proof of the theorem. 0O

Next, we compute the discrete analogue of Yy via

YL = yo, (1.155);
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and for n = 1,..., N, assuming that Yon_l s known, solve the following
(well-posed) elliptic problem
n o_ Yn—l
Yo—‘ﬁ— +AYy'=0inQ, Yy =0onT. (1.155)2
Finally, we approximate problem (1.116) by
At e LX), A o (1.156)
(K71 + AR A f) = (yr = YV, ) Vf € L2(Q). '

Problem (1.156) can be solved by a time discrete analogue of algorithm
(1.134)—(1.148).

Remark 1.32 The Fuler schemes which have been used to time discretize
problem (1.116) are only first-order accurate; for some applications this may
require very small time steps At to obtain an acceptable level of accuracy. A
simple way to improve this situation is to use second-order schemes like those
described in Section 1.8.5 (variants of these schemes have been successfully
used to solve boundary controllability problems for the heat equation in
Carthel et al. (1994)).

1.8.4. Full discretization of problem (1.116).

We suppose from now on - and for simplicity - that 2 and O are polygonal
domains of IR? (for nonpolygonal domains and/or O we shall approximate
them by polygonal domains). We introduce then a first finite element tri-
angulation Tp of @ (h: largest length of the edges of the triangles of 7j)
as in Dean, Glowinski and Li (1989), Glowinski, Li and Lions (1990) and
Glowinski (1992a); we suppose that both £ and @ are unions of triangles of
Th. Next, we approximate H1(Q2), L%(Q2) and H}(2) by the following finite-
dimenstonal spaces (with P; the space of the polynomials in two variables
of degree < 1)

Vi = {vn | vy € CUQ),vn |7€ P, VT € Tp,} (1.157)
and
Vor = {vn | vn € Vi,up =00n T} (= Vi NHHQ)), (1.158)

respectively. We introduce now a second finite element triangulation 7y of
Q2 (we may take 7, = Ty, but the idea here is to have Ty coarser than 7)
and we associate with 7y the following two finite-dimensional spaces

Ey = {fH | fH € CO(Q),fH |r € P, VT € Ty}, (1.159)

Eoy = {fH I _fH € Fy, fH =0 on F} (= FEy OH&(Q)) (1.160)

Since closure of H(Q) in L%(Q) = L*(Q) we can use either V, or Vyy
(respectively Ey or Epy) to approximate L%(Q).
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At this stage, it is convenient to (re)introduce a : H}(Q) x H}(Q) — R,
the bilinear form associated with the elliptic operator A; it is defined by

a(y,z) = (Ay, 2) Yy, z € Hy(Q), (1.161)

where, in (1.161), (-, -) denotes the duality pairing between H~1(Q) and
H}(). Similarly we have

a(z,y) = (A*y, 2) Yy, 2 € HY(Q). (1.162)

From the properties of operator A (see Section 1.1), the above bilinear
form is continuous over H}(Q) x H} () and Hj(Q)-elliptic.
We approximate problem (1.116) by

fiLAhtI € Eyy VfH € Epy we have
. R (1.163)
/Q(k‘1 i+ ARh ) fr da = /Q (yr — Y Fu da,

where, in (1.163), Y{Y is obtained from the full discretization of problem
(1.117)-(1.119), namely

Y3, = yor with yor(€ V) an approximation of yg; (1.164);
forn=1,... N, assuming that YO';l_l is known, compute Y} via the solution
of the following (approzimate and well-posed) elliptic problem.

Ygh € Von,
/Q ﬁ%:ﬁf_lvh dz + a(Yg}, vn) = 0 Yo, € Vop. (1-164),

The operator AhAf, is defined by
Avhfr = of Vfu € Eog, (1.165)

where in order to compute cp,]:’ we solve sequentially the following two dis-
crete parabolic problems:

First problem
YAt = fu (1.166);

then for n = N,N —1,...,1, we compute 9} from w,'.fﬂ via the solution of
the following discrete Dirichlet problem

n _ gn+l
/n . Aztph vhdz + a(vh, ¥f) = 0 Vun € Vou; Y € Von.  (1.166);

Second problem
oh = 0; (1.167)1
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forn=1,..., N, we compute ¢} from cpz_l via the solution of the following
discrete Dirichlet problem

2k Foon) = | URvadz Yos € Vous o} € Vi
th z + a(pp,vp) = Ypvpdx Yo, € Vor; @ € Von.
Q o

(1.167)2

The discrete elliptic problems (1.166); and (1.167); have a unique solution
(this follows from the properties of the bilinear form a(-,-)).

Concerning the properties of AhAﬁl we can prove the following fully discrete
analogue of relation (1.154):

N
/Q(Aﬁéfy)fy dz=At) /01[121;2 dz Vfu, fu € Eoy, (1.168)
n=1

which shows that operator AhA}I is symmetric and positive semi-definite,
implying in turn that problem (1.163) has a unique solution and can be
solved by a conjugate gradient algorithm (described in the following Section
1.8.5).

Remark 1.33 We can apply the trapezoidal rule to evaluate the various
L?(§2)-scalar products taking place in (1.163), (1.164), (1.166), (1.167) (see
Glowinski et al. (1990) and Glowinski (1992a) for more details about the
use of numerical integration in the context of control problems).

Remark 1.34 Instead of Eyy we can take the space EFy to approximate
problem (1.116); the corresponding approximate problem is still well posed
and can be solved by a conjugate gradient algorithm.

1.8.5. Iterative solution of problem (1.163).

From the properties of AhA}{ shown in the previous section, the bilinear
form in (1.163) is symmetric and positive definite (in fact uniformly with
respect to h, H and At). Thus, problem (1.163) can be solved by a conjugate
gradient algorithm which is a discrete analogue of algorithm (1.134)—(1.148).

Description of the algorithm For simplicity, we shall drop the subscripts
h, H and superscript At from f&5.
Instialization

fo is given in Eyy; (1.169)
assuming that p6‘+1 s known, solve the following discrete Dirichlet problem
forn=N,...,1

i LA n) =0 Vv € Vou; pt € Vi 1.17
T A Y z + a(v,pg) =0 Vv € Vop; py € Vo, (1.170),

with
Pyt = fo, (1.170),
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and set
=i lo. (1.171)
Assumang that yg"l is known, solve forn = 1,..., N, the following (well-

posed) discrete problem

n__ ,n—1
/ @_A?;o_vdxm(y&v) =/ wBvdz Vo € Vor; o € Vor,  (L172);
Q o

with
Yo = Yoh- (1.172),
Finally, solve the following variational problem
90 € Eomn,
{ [wiar= [0 o+l ~vmfdavfe my, T
and set
wo = go- O (1.174)

Then for m > 0, assuming that fn, gm, W, are known, compute fpmi1,
Jm+1; Wma1 as follows.

Assuming that pT is known, solve forn = N,...,1, the following (well-
posed) problem

P = 17"“ _ _
/ ———vdx + a(v,py) = 0 Vv € Vop; Py € Vor, (1.175),
with
P = W, (1.175),
and set
= Pm lo - (1.176)
Assuming that g1 is known, solve for n = 1,..., N, the following (well-

posed) problem
g’:’:l — gT’:l—lvdx + a(‘" ’U) = it vdx Yv € Von; o, € Vi (1 177)
A A__t___ (TH o m Ohs Ym Ohs * 1
with
g?n =0. (1.177)2

Next, solve

{ gm € EomH,

/ Imfdz = / (k™ Ywm + §N) f dz Vf € Eom, (1.178)
Q Q
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and compute

24
pr = Jolomldz (1.179)
fQ Imwm dz
and then
fm+1 = fm — PmWm, (1.180)
Im+1 = 9m — PmJm.- (1.181)

If Ngm+1ll2e)/llgoll 2oy < €, take f = fmy1 and solve (1.166) (with fy =
f) to obtain u™ = Y™ |0, forn =1,...,N; if the above stopping test is not
satisfied, compute

_ ”9m+1”%2(9)

Tm =

) (1.182)
”gm|l2L2(Q)

and then
Wmt1 = gm+1l + YmWm. O (1.183)
Dom=m+1 and go to (1.175).

Remark 1.35 The computer implementation of algorithm (1.169)—(1.183)
requires the solution of the discrete Dirichlet problems (1.170);, (1.172);
and (1.175); and (1.177);; to solve these (linear) problems we can use either
direct methods (such as Cholesky’s if the blinear form a(.,.) is symmetric) or
iterative methods (such as conjugate gradient, relazation, multigrid, etc.). To
initialize the iterative methods we shall use the solution of the corresponding
problem at the previous time step.

A variant of algorithm (1.169)—(1.183) has been employed in Carthel et al.
(1994), to solve exact and approximate boundary controllability problems
for the heat equation; see also Section 2.5 (Acta Numerica 1995).

1.8.6. On the use of second-order accurate time discretization schemes for
the solution of problem (1.114).
We now complete Remark 1.32 and closely follow Carthel et al. (1994,
Section 4.6).

1.8.6.1. Generalities. The numerical methods described in Sections 1.8.3 to
1.8.5 rely on a first-order accurate time discretization scheme (namely the
backward Euler scheme). In order to decrease the computational cost for a
given accuracy (or increase the accuracy for the same computational cost),
it makes sense to use higher order time discretization schemes. A natural
choice in that direction seems to be the Crank-Nicolson scheme (see, e.g.
Raviart and Thomas (1988, Ch. 7)) since it is a one-step, second-order accu-
rate time discretization scheme, which is, in addition, no more complicated
to implement in practice than the backward Euler scheme. Unfortunately, it
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is well known that the Crank-Nicolson scheme is not well suited (unless one
takes At of the order of h?) to simulate fast transient phenomena and/or
to carry out numerical integration on long time intervals [0,T]. From these
drawbacks a more natural choice is the two-step implicit scheme described
next which is second-order accurate, has much better properties than Crank-
Nicolson concerning fast transients and long time intervals, and which is no
more complicated to implement in practice than the backward Euler scheme
(for a discussion of multistep schemes applied to the time discretization of
parabolic problems, see, e.g. Thomee (1990, Section 6)).

1.8.6.2. A second-order accurate time approzimation of problem (1.114). In
order to solve the control problem (1.114) via the solution of the functional
equation (1.116), the crucial point is — again — to properly approximate the
operator A and the function Yy defined in Section 1.8.1.

Approximation of operator A Focusing on time discretization, we ap-
proximate A by A2 defined as follows (we use the notation of Section 1.8.3).

Let us consider f € L?(Q), then

ABLf = 2pN =1 N =2 (1.184)
where to obtain 2, N1 we solve first forn =N —1,...,1 the following
(well-posed) Dirichlet problem

%wn _ 2,¢n+1 + %¢n+2

A7 +A*Y"=0inQ, ¢Y"=0o0nT, (1.185)
with
N =2f, YNt =4f, (1.186)
then, with ¢° =0,
Q! — O
Az + (24! + %A(po) =20 in Q, ¢'=0o0nT, (1.187)

and, finally, forn=2,...,N —1,
%9071 _ 2(1011—1 + %(pn——Z
At
It can be shown that

+ A" =Y"xoinQ, ¢"=0o0onl. O (1.188)

N-1
At i _ n.n 7 2
@ nfes=a s [yrinaevs, fe o),

i.e. Theorem 1.2 still holds for this new operator A%t (in fact, A2? has been
defined so that the above relation holds; see also Remark 1.36).

Approximation of Yy To compute the discrete analogue of Yy, we take
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Yy = yo and we solve the Dirichlet problem
Yo - ¢

At
and then forn=2,...,N — 1,

%)/bn _ 2Y0n—1 + %Yon—Z
At

+ (2AY +1AY)=0inQ, Yy =0onT, (1.189);

+AY=0inQ, Yy =0onT. (1.189),

Approximation of problem (1.116) We approximate problem (1.116)
by

{ At e L2(Q); Vf € L*(Q) we have
(k71O + AB AL fYragy = (yr — 2Y5 1 + YV 72, P2y

Problem (1.190) can be solved by a discrete analogue of algorithm (1.134)-
(1.148). Also, the finite element discretization discussed in Section 1.8.4
can be applied easily to problem (1.190) and the resulting fully discrete
problem can be solved by a variant of the conjugate gradient algorithm
(1.169)-(1.183).

Remark 1.36 The definition of A2! via relations (1.184) to (1.188), may
look somewhat artificial; in fact, it can be shown that the control obtained
via the solution of (1.190) is the unique solution of the following (time
discrete) control problem:

(1.190)

min JA L, 0N

, (1.191)
{or}Nle(L2(o)N -1

where, in (1.191), we have

At No1y At 72 kKio N-1  N-2 2
I (07T = = > /o 077 dz + S li2y" " =y —urliae)
n=1

(1.192)
and where yV =2y are obtained from {v"},}:’:—l1 via the solution of the
following discrete parabolic problem:

¥° = yo, (1.193)

N-1

yl_yO
At
and forn=2,...,N —1,
%yn _ 2yn—1 + %yn—Q
At

In principle, 2y~ — y¥~2 is an O(]At|?) accurate approximate value of
y(T') obtained by extrapolation.

+A(2' +3°) = 2v'xoin @, y'=0onT, (1.194)

+AY" =v"xoin 2, y"=0onT. (1.195)
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Remark 1.37 A variant of the previously mentioned second-order time
discretization scheme has been successfully applied in Carthel et al. (1994,
Section 7) to the solution of exact and approximate boundary controllability
for the heat equation; see also Section 2.5 (Acta Numerica 1995).

1.8.7. Convergence of the approzimate solutions of problems (1.114).

In this section, we shall discuss the convergence of the solution of the fully
discrete problem (1.163) — and of the corresponding approximate solution
of problem (1.114) — as {At,h, H} — 0. Problem (1.163) has been defined
in Section 1.8.4 (whose notation is kept) by

th;i € Eon VfH € Eong we have

) (1.196)
07 8%+ ARk 1) o de = [ (ur — Vi)
Q Q

Concerning the convergence of {th}ﬁ}{At,h,H} as {At,h,H} — 0, we have
the following

Theorem 1.3 We suppose that

lim flyon — yoll2(@) = 0, (1.197)
and
the angles of 7, are uniformly bounded away (1.198)
from 0 (i.e. 389 > 0, such that 8 > 8y V8 angle of 7;, Vh). '
Then
=0, 1.199
aclm IR = Pl (1.199)
. At _
{At’}llg}}ﬁo lYrEx0 = ullL2(0%0,7)) = 0, (1.200)

where, in (1.199), f and f7, are the solutions of problems (1.116) and
(1.163), (1.196), respectively and where, in (1.200), u is the solution of the
control problem (1.114) and ¥25xo the discrete control corresponding to
fAS via (1.166), with ) ! = fAL in (1.166);.

Proof. To simplify the presentatlon we split the proof into several steps.
(i) Estimates. Taking fy = f5% in (1.196) we obtain, since operator A%,
is positive semi-definite (see Section 1.8.4, relation (1.168)), that

I 5% 20y < Ellyr — Yorll 2y V{At, b, H}. (1.201)

It follows then from standard results on the finite element approzimation
of parabolic problems (see, e.g. Raviart and Thomas (1988, Ch. 7, Section
7.5) and Fujita and Suzuki (1991, Ch. 2, Section 8)) that Properties (1.197),
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(1.198) imply that

. N _
{A},I,{f}l_»o 1Yor — Yo(T)llp2¢n) = 0, (1.202)

where Y is the solution of the parabolic problem (1.117)-(1.119). It follows
from (1.201) that the family {%I,Y}{At,h} is bounded in L%(Q) which implies,
in turn, that the right-hand side of (1.201) and therefore

e L2t aeh H)

are bounded. Since the family {th,_}}{At,h,H} is bounded in L%(2) we can
extract a subsequence — still denoted by { thht,}{ At,h,H} — Such that

(A }Lirg}_’o AL = f* weakly in L%(Q). (1.203)

(ii) Weak convergence. To show that f* = f, it is convenient to introduce
My, the L2(Q)-projection operator from L2(Q) into Eyp; we have

Lim |y f = fllza) =0 ¥f € LX(Q). (1.204)
In Lemma 1.1 which follows later, we shall prove that
. 2

{At,}llg}} IARET: f — Afll 20y = 0 VF € LX(9). (1.205)

It follows then from (1.196), (1.201)—(1.205) and from the symmetry of oper-
ators A and ALY, that, Vf € LQ(Q),
lim /(k 1 At (AT Fdg

{At,R,H}—0J

= dm [ / £ ) do + [ (AR5 da

{At,h,H}—>0
= [ A de
= i VT F e — _ 3
- {At,:flll,III'Il}—vo_/Q(yT Yo )y f d /Q(?/T Yo(T))f dx.

Thus, we have proved (if (1.205) holds) that f* is a solution of problem
(1.116); since (1.116) has a unique solution we have f* = f and also the fact
that the whole family {th}{At h,H) converges to f as {At,h,H} — 0.

(iii) Strong convergence. Let us introduce th = fAL — Iy f; we clearly
have

e h H}—»O fB5 =0 weakly in L%(). (1.206)

We also have, V{At, h, H},
TS ) < [ G TR+ AR TN T (1.207)
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Concerning the right-hand side of (1.207) we have, from (1.196),
(k™" Fiokt + ARk Fi PRt 2oy
= (k™' fio + ARh hHath)LQ(Q) (k7Mpf + ARETIaf, £
= (yr — Yomth)m(ﬂ) (kT'pf + ARETLa f, FRY:-

Taking the limit in the above relations and in (1.207) as {At,h, H} — 0, we
obtain from (1.201)~(1.206) that

0 < lmyaen my—oll Fii ey < Timiach my—ofiiliz) < 0;  (1.208)

we have thus proved that

{At,}Ll,IE}—»O I Fiillz2 () = 0,
which combined with (1.204) (with f = f) implies in turn the convergence
property (1.199).

(iv) Convergence of the discrete control. The solution u of the control
problem (1.114) satisfies u = ¥ x, where ¥ is the solution of the parabolic
problem (1.132) when ¢(T) = f, f being the solution of problem (1.116).
Similarly, we associate the solution fA¢ of problem (1. 163) (1.196) with
the solution {¢?5}2_; of problem (1. 166) when wNH AL in (1.166); or,
equivalently, the piecewise constant function ¢ of ¢, defined by

Vo = Z YRy In, (1.209)

n=1
where I, is the characteristic function of (0,T)N((n—1/2)At,(n+1/2)At).
Since Limgasn Hy—0 | F5% — fllze(@y = 0, it follows from Raviart and

Thomas (1988), and from Lemma 1.1, that

{AthH} OHI/JhH Yl r2) =0

which implies in turn that

. At _
{At,}ll,lfr}}—»o lYrExo — ull2(0x(0,7)) = 0,

i.e. relation (1.200) holds. O

The proof of Theorem 1.3 will be complete once we have proved the fol-
lowing

Lemma 1.1 Suppose that the angle condition (1.198) holds and consider
a family {fy}n of Eop such that

JLim. I £ = fllz20) = 0. (1.210)
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If with fi we associate AL far, {Un}N_1, {pn}A, via (1.165)-(1.167), re-
spectively, we then have

; AL 7 B
e, Wik — Yl =0, (1.211)

: At ¢ 2 -
aeim, MAna fi = Az =0, (1.212)

where, in (1.211) 1&,?151 is defined from {1/};1},]:;1 by (1.209) and where ¥ is
the solution of

— %—’f + A% =0inQ, ¥=00nY%, (T)=f. (1.213)

Proof. (i) Proof of (1.211). For convenience, extend {@h}fl\'zl ton =0 by
solving (1.166), for n = 0, and still denote by 12 the function 2,1:’:0 Yy In;
it follows from Raviart and Thomas (1988), that

. N _
{At,;zl,rll:ll}——»o Ve — Ylleo(o,r;22(0)) = 0 (1.214)

if we can show that

. *N r3 _
{At’}llf}}}ﬁo l¥n — fll2) = 0. (1.215)

To show (1.215), observe first that 1/3,1:’ is the unique solution of the discrete
elliptic problem

{ w{f € Von,

/";;ijvhdx-f-Ata(vh,Q;}}y) :/fyvhdx Von € Von. (1.216)
f Q

Taking vy =) in (1.216), we obtain, from the H}(Q) ellipticity of a(-,)
(see Section 1.1), from the Schwarz inequality in L%(Q2), and from (1.210),
that

(A28 | g3y < C V{AL h, HY, (1.218)

where, in (1.217), (1.218) (and in the following), C denotes various quantities
independent of At,h, H.
Since from (1.217)), {w}]:j}{At,h,H} is bounded in L%(Q2), we can extract a

subsequence — still denoted by {1[1,11\’ }at,h,m) — such that

ot }lirIr{l} Oz[){)’ = f* weakly in L%(Q). (1.219)

Consider, next, v € D(2) and denote by r,v the linear interpolate of v on T;
since the angle condition (1.198) holds, it follows from, e.g., Ciarlet (1978;
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1991), Raviart and Thomas (1988), Glowinski (1984, Appendix 1), that
;llii% |rpv — v||H&(Q) =0 Vv € D(Q). (1.220)

Take now v, = rpv in (1.216); it follows then from (1.218), (1.220), and
from the continuity of a(., .) over H}(Q) x H}(Q) that

/@ﬁrhvdx—/ erhvdx
Q Q

Taking the limit in (1.221), as {At, h, H} — 0, it follows then from (1.210),
(1.219), (1.220) that

< Cloll gyl At]V? Vo € D(Q).  (L.221)

/ frodz = / fvdz Vv € D(Q). (1.222)
Q Q

Since D(R) is dense in L2(R), it follows from (1.222) that f* = f and also
that the whole family {y} }at,n,H) converges weakly to f. To prove the
strong convergence, observe that

AN___ £12 — £12 _ TN ¢ TN 2
[t —frde = [1fPde—2 [ 3 ides [ NP de
£12 _ N § N2
/Qlfl dz Z/Qwhfdx+/ﬂ|wh|dx
+Ata( Pl )
= /Iledw—2/%ﬁfdx+/fmz{:’dx.(1.223)
Q Q Q

It follows then from (1.210), (1.223) and from the weak convergence of
{Q%V}{At,h,H} to f in L2(Q) that the convergence property (1.215) holds;
it implies (1.214) and therefore (1.211).

(ii) Proof of (1.212). We associate the solution ¥ of (1.213) with the
solution ¢ of

%—‘f +Ap=9pinQ, $=00nX, &(0)=0. (1.224)

We then have

IN

Af = @(T). (1.225)
Similarly, we associate {47 }N_ with {¢P} N, defined by
=0, (1.226),

and, for n = 1,..., N, by the solution of the following discrete elliptic prob-
lems

&n € Von,

an ~n—1 N 1.226 2
/ PPk de + a(Ph, vn) = / Yrvn dz Yup € Vor. ( )
O o

At
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We have

Arfifu=on.

(1.227)

In order to prove (1.212) it is quite convenient to associate with 1 the family

{671N_, defined by
8 =0,
and, for n =1,..., N, by the following discrete elliptic problems
7 € Von,

én _ én-—l R .
/ “h Ch yndz+ a(fp,vp) = / Y(nAt)vy dz Vv, € Vpp.
o At o

Let us define @5 and 62 by

N
Grtr = eI,
n=1

respectively. Since
¥ € C°([0,T); L*(9)),
it follows from Raviart and Thomas (1988), that

(At }31;11}_)0 05 = ¢ strongly in L2(0,T; H (),

{At,}zl,rll;l}—.olgzaéxzv 16k = o(nADllzza) = 0.

~ At

(1.228);

(1.228),

(1.229)

(1.230)

(1.231)

(1.232)

Actually, similar convergence results hold for ¢3};. To show them, denote

by éffl the difference $2f — 2%; we clearly have

-0
op =0,

and forn=1,...,N
oh € Von

~n—1

(1.233);

/Q Ph=Ph oy dz +a(B),vm) = /0(1[1}7 — $(nAt))op dz Yop € Vo

At

(1.233),

Take v, = @), in (1.233); and remember that a(v,v) > a||v]|? Yo € HA(Q),
with & > 0 (see Section 1.1); we then have from the Schwarz inequality in
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L?(9) and from the relation
208 < ca® + ¢ 132 Va, 8 € Rve >0,
that

an—1

‘2‘&(”@2”%2(9) (28 ||2L2(Q))+a||<52”§13(g) < W’Z ﬂﬁ(”At)HLZ(Q)”SE_DZHL?(Q),

which implies, in turn, since the injection from H3(Q) into L?() is continu-
ous, that Vn > 1,Vc > 0, we have

an an—1 -n
2—/15(||<Ph||2L2(Q) = [I&n “2L2(Q)) + 7[|<Phl|2L2(Q)
1 n n o
<} (008 - om0l + cllFhltaey ) (1234

where, in (1.234), v is a positive constant.
Taking ¢ = 27y in (1.234), we obtain

an e At o s
I8k 3200y = 187 1 Z2eq) < EH% — Y(nAt)|[f2q) VR =1,...,N,

which implies, by summation from n =1 to n = N, that
N
N At 7 n
IBh 1720y < o Zl 167 — $(nAt)|72(q)- (1.235)
n=

It follows then from (1.211) and (1.235) that limya¢ , mry—0 N —é}ylle(Q) =
0, which combined with (1.232) implies that
li N — o(T =0. 1.236
lim o = oDl = 0 (1.236)
Finally, relations (1.225), (1.227) and (1.236) imply the convergence result
(1.212).

1.8.8. Solution methods for problem (1.115).

In this section, we discuss the solution of the variational inequality (1.115),
which is equivalent to the control problem (1.109) (via a duality argument).
We observe that (1.115) can also be written as the following nonlinear (mul-
tivalued) equation in L?(£2)

yr — Yo(T') € Af + B9j(f), (1.237)

where, in (1.237), 0j(f) denotes the subgradient (see, e.g., Ekeland and
Temam (1974) for this concept) at f of the convex functional j(-) defined
by

i(f) = 1f 2@ Vf € LX),

Equation (1.237) strongly suggests the use of operator splitting methods like
those discussed in, for example, P.L. Lions and Mercier (1979) and Glowinski



314 R. GLowINSKI AND J.L. LIONS

and Le Tallec (1989). A simple way to derive such methods is to associate
with (1.237) a time-dependent equation (for a pseudo-time 7) such as

O AT+ BO5(f) = yr — %(T),
f( ) = fole LX()).

Next, we use time discretization by operator splitting to integrate (1.238)
from 7 = 0 to 7 = 400 in order to capture the steady-state solution of
(1.238), namely the solution of (1.237).

A natural choice to integrate (1.238) is the Peaceman-Rachford scheme
(cf. Peaceman and Rachford (1955)), which for the present problem provides

(1.238)

£ = for (1.239)
then, for k > 0, compute f¥*t1/2 and f*+1 from f*, by solving
k+1/2 _ ¢k
f—AW'f— + BOF(FFH?) + Af* = yr - Yo(T), (1.240)
and
k+1 _ rk+1/2
I | oM+ A — -, (124D)

AT/2

where A7(> 0) is a (pseudo) time discretization step. The convergence of
{f¥}k>0 to the solution f of (1.115), (1.237) is a direct consequence of Lions
and Mercier (1979), Gabay (1982; 1983) and Glowinski and Le Tallec (1989);
the convergence results shown in the above references apply to the present
problem since operator A (respectively function j(-)) is linear, continuous
and positive definite (respectively conver and continuous) over L?(2).

A variant of this algorithm is given by the following #-scheme (where
0 < 0 <1/3; see, e.g., Glowinski and Le Tallec (1989)):

= fo; (1.242)
then, for k > 0, compute ¥+, fk+1-6 ¢k+1 from f* by solving
fk+0 fk "
oAr T BF(f**°) + Af* = yr — Yo(T), (1.243)
fk+l—9 . fk+0 o . 0
TA20Ar + BOF () + AfFHY = yr — Yo(T), (1.244)
fk+1 _ fk+1——0 . . .
i + B0 + AF = yr = Yo(T). (1.245)

In practice, it may pay to use a variable Ar. Concerning now the solution
of the various subproblems in the above two algorithms, we can make the
following observations:
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(i) Assuming that we know how to solve problems (1.240) and (1.243),
(1.245), the functions f*+1 and f**+!~% are obtained via the solution of
linear problems similar to the one the solution of which has been discussed
in Sections 1.8.2 to 1.8.7; in particular, we can use the conjugate gradient
algorithm (1.169)—(1.183) to solve finite element approximations of problems
(1.239) and (1.244).

(ii) Problems (1.240) and (1.243), (1.245) are fairly easy to solve. Con-
sider, for example, problem (1.240); it is clearly equivalent to the following
minimization problem

fk+1/2 c LQ(Q), (1 246)

Te(f¥1/2) < Ji(v) Yo € LA(Q), '
with

Jr(v) = %/Q|v|2 dz + BLAT|v|| 2(q) — /kav dz

—% /Q(yr — Yo(T) — Af¥)vdz Vv € LA(Q). (1.247)

To solve problem (1.246), we define ffH/z as
S = P4 s ATy - Yo(T) — ASY) (1.248)
and observe that the solution of problem (1.246) is clearly of the form
FRAVZ = ZBHL2 fERUR Gign ARFL2 > g, (1.249)
To obtain A**1/2 we minimize with respect to A, the polynomial
k+1/2 k k+1
12100y (322 = X) + BBATI L2 oA (= ML),
We obtain then (since A\¥+1/2 > 0)

{ Ak+1/2 =1— %ﬂAT/llff+1/2||L2(Q) lf Hff+1/2“L2(Q) Z ,BAT/Z,

N2 — 0 (| A2 o) < BAT/2.
(1.250)
The same method applies to the solution of problems (1.243) and (1.244).

Remark 1.38 Concerning the calculation of f**1 we shall use equation
(1.240) to rewrite (1.241) as

fk+1 _ 2fk+1/2 + fk

ATTZ + A = AfF, (1.251)

which is better suited for practical computations. A similar observation
holds for the calculation of f¥+19 in (1.244).
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1.8.9. Splitting methods for nonquadratic cost functions and control con-
strained problems.

1.8.9.1. Generalities. In Section 1.7, we have considered control problems
such as (or closely related to)

1

~ d sdz dt + Lklly(T) — yr|? , 1.252
ver BB [S /OX(O,T)IUI xdt + 1klly(T) — yrllz2(q) (1.252)

where, in (1.252), s € [1,4+00),k > 0 and where y is defined by (1.111)-
(1.113); the case s = 2 has been treated in Sections 1.8.2 to 1.8.7. Solving
(1.252) for large values of s provide solutions close to those obtained with
cost functions containing terms such as ||v|| p(ox(0,1))-

Another control problem of interest is defined by

- 2
min HIY(T) — yrllizq) (1.253)
with
Cr={v|veL>®0Ox(0,T)),v(z,t)] £C ae. in Ox(0,T)}

and y still defined by (1.111)-(1.113).

The conver set Cy is clearly closed in L2(O x (0,T)); we shall denote by
Ic, its characteristic function in L%(0 x (0,T)).

Problem (1.253) is clearly equivalent to

. 2
sepain e, (0) + 310(T) = vr ey (1254)

In the following subsections we shall show that problems (1.252) and (1.253),
(1.254) are fairly easy to solve if one has a solver for problem (1.114) (i.e.
for problem (1.252) when s = 2).

1.8.9.2. Solution of problem (1.252). Suppose for the time being that s > 1
and let us denote by J(-) the strictly conver functional defined by

1
== *dzdt+ Lk —yrl? 1.2
J(v) p //;)X(O’T) lv® dzdt + klly(T) — yrlize(q) (1.255)

where, in (1.255), y is obtained from v via (1.111)-(1.113). Define next
Ji(+) and Jo(-) by

1
Ji(v) = —// lo]° da dt (1.256)
S Ox(0,T)

and

J2(v) = 1kllY(T) = yrllZ2q), (1.257)
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where y is obtained from v via (1.111)—(1.113), respectively. Both functions
are clearly differentiable in L*(O x (0,T)) and we have

(J1(v),w) = // [v|*~2vwdz dt Vv, w e LSO x (0,T)), (1.258)
Ox(0,T)

(Jy(v),w) = —// pwdzdt Vv, w e L°(O x (0,T)), (1.259)
0x(0,T)

where, in (1.258), (1.259), (.,.) denotes the duality pairing between LY (O x
(0,7)) and L5(O x (0,T))(s' = s/(s — 1)) and where p is the solution of the
adjoint state equation

a .
- a—f +A'p=0inQ, p=0onX, p(T)=k(yr —y(T)). (1.260)

If u is the solution of the control problem (1.252), it is characterized by
J'(u) = 0, which here takes the following form:

Ji(u) + J3(u) = 0. (1.261)

In order to solve (1.252), via (1.261), we follow the approach taken in Section
1.8.8 and we associate with (1.261) the following (pseudo) time-dependent
problem in L*(O x (0,T)):

ou
— + Ji{(u) + Jo(u) =0,
97 1(w) 2(u) (1.262)

To obtain the steady-state solution of (1.262) (i.e. the solution of (1.252),
(1.261)) we integrate (1.262) from 0 to 4+oco by operator splitting; if one uses
the Peaceman—Rachford scheme (see Section 1.8.8), we obtain

u® = ug, (1.263)
and for n > 0, assuming that «™ is known
un+1/2 —u®
—1a T2y ¢ Sty =0, (1.264)
b T
untl _ /2
I S+ B =0 (1.269)
2
Equation (1.264) can also be written
un+1/2 — "

. n |un+1/2ls—2un+1/2 —p"xo =0, (1.266)
] T
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where p™ is obtained from u™ via

8 n
S+ Ay =uoinQ, ¥t =000, y*(0) =0, (1.267)
8pn * N : 7 (] n
—W—FA p"=0inQ, p"=0onX, p™(T)=k(yr —y™(T)). (1.268)
We thus obtain 4”*1/2 from 4" by solving the nonlinear problem

w2 4 %AT|u"+l/2|S_2u""'1/2 =u" 4+ 1A7p"x0. (1.269)

Problem (1.269) can be solved pointwise in O x (0,T'); at almost every point
of O x (0,T) (in practice at the nodes of a finite difference or finite element
grid) we shall have to solve a one variable equation of the form

£+ LATIEFT2E =, (1.270)

which has, Vb € R a unique solution.
Problem (1.265) is equivalent to the following minimization problem

i in(v), 1.271
ver2(0x(0,1)’ () (1.271)

where j,(.) is defined by

Jn(v) = %//mm) v? dz dt
—//(; o T)(u"H/2 + %AT|U”+1/2’3—2'IL"+1/2)’Ud.’L‘dt
x(0,

+3RAT|Y(T) = yrll3 o), (1.272)

with y obtained from v via (1.111)—(1.113). Problem (1.271), (1.272) is a
simple variant of problem (1.114); it can therefore be solved by the numerical
methods described in Sections 1.8.2 to 1.8.7.

Remark 2.39 From a formal point of view the above method still applies if
s = 1. In such a case we shall replace (1.269) by the minimization problem

min [% // v2dzrdt
veL2(Ox(0,T)) Ox(0,T)

+%AT// |v|dx dt —// (u"+1ATp")vdx dtJ (1.273)
0x(0,T) 0x(0,T)

whose solution u™*1/2 is given (in closed form) by
ut2(z,8) = 0 if |(u" + JATP")(x,1)| < AT, {z,t} € O x (0,T),
uttV2(z,t) = (u" + $ATP")(z,t) — $AT sgn (ut + JATP") (2, )

if [(u™ + LA7Tp")(z,t)| > 1AT, {z,t} € O % (0,T).
(1.274)
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Concerning now the calculation of u™*1, we observe that this function is the
solution of
untl — ontl/2 4 ogn

Jl n+1 =J’ n ,
%AT + Jy(u™T) 2(u™)

which is equivalent to the minimization problem

min = dzdt + >ATkly(T) —

veL?(OX(0,T)) [2 //oX(o,:r)v 1A7EIY(T) = yrl12)
Ox(0,T)

where y is a function of v via the solution of (1.111)-(1.113). Problem

(1.275) is also a variant of problem (1.114).

Remark 1.40 Equation (1.262) and algorithm (1.263)—(1.265) are largely
formal if 1 < s < 2; however they make full sense for the discrete ana-
logues of problem (1.252) obtained by finite difference and finite element
approximations close to those discussed in Sections 1.8.2 to 1.8.7.

1.8.9.8. Solution of problem (1.253), (1.254). We follow the approach taken
in Section 1.8.9.2; we introduce therefore J; and J; defined by

J1(v) = I, (v), (1.276)
and
J2(v) = HIy(T) = yrlit2(q) (1.277)

y obtained from v via (1.111)—(1.113), respectively. The solution u of prob-
lem (1.253), (1.254) is characterized therefore by

0 € 8J1(u) + Jy(u) (1.278)

where, in (1.278), 8J1(.) is the subgradient of Ji(.), and where J5(.) is
defined by (1.259), (1.260) with & = 1.

We associate with (1.278) the following (pseudo) time-dependent problem
in L2(O x (0,T)):

or
u(0) = up(€ Cf).
Applying as in Section 1.8.9.2 the Peaceman—Rachford scheme, we obtain
u® = uy, (1.280)

{ O L 37 (u) + Jiu) =0, (1.279)

and for n > 0, assuming that ™ is known
un+1/2 —

i TN+ () =0, (1.281)
0] T
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untl — un+1/2

n+1/2 n4ly _
Ay + 8J; (w2 + Jh(umtY) = 0. (1.282)
Equation (1.281) is equivalent to the minimization problem
min[ // v?dzdt — // p"vdxdt|, (1.283)
veCy Ox(0,T) Ox(0,T)

where, in (1.283), p™ is obtained from u™ via (1.267), (1.268) with k = 1; we
have then

u"/2(z,t) = min(C, max(—C, p™(x,t))), a.e. on O x (0,T). (1.284)
Summing (1.281) and (1.282) implies that
un+1 _ 2un+1/2 +
1AT
which is equivalent to the minimization problem
mi l// 24z dt + LA7|ly(T) — yrll?
v€L2(01><n(O,T)) [2 OX(O,T)U z 4 T”y( ) yT”L2(Q)
- // (2ut1/2 — oy — 1ATp™)wdz dt|, (1.285)
Ox(0,T)

where y is a function of v via (1.111)—(1.113). Problem (1.285) is a variant
of problem (1.114).

+ Jy(u™th) = Jp(u™),

1.9. Relaxation of controllability

1.9.1. Generalities.
Let H be a Hilbert space and let C be a linear operator such that

C € L(L*(Q); H), (1.286)
and
the range of C is dense in H. (1.287)

We cousider again the state equation

e LA Ay=vxpoin @, y(0)=0, y=0o0nZx, (1.288)
and we look now for the solution of
inf} // v? dz dt, (1.289)
0x(0,T)

for all vs such that
Cy(T;v) € hr + By, (1.290)

where hy is given in ‘H and where By denotes the unit ball of H.
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Remark 1.41 If H = L?(), C = identity, and if hy = yr, then problem
(1.289) is exactly the control problem discussed before.

1.9.2. Examples of operators C.

Example 1.2 Let w be an open set in 2 and x,, be its characteristic function.
Then

Cy = yxw (1.291)
corresponds to

H = L*(w). (1.292)
Here, we want to reach (or to get close to) a given state on the subset w.

Example 1.3 Let g1,...,gn be N given elements of L?(Q), linearly inde-
pendent. Then

Cy = {(y, 9:) 20 11, (1.293)
corresponds to H = RV,

The same considerations as in previous sections apply. Let us write down
explicitly the dual formulation of (1.289), (1.290), in the particular cases of
Examples 1.2 and 1.3.

1.9.3. Dual formulation in the case of Example 1.2.
Let f be given in L?(w). We introduce v defined by

—%—f—#A*dA}:Oin Q, ¥(T)=fxw, %=0o0n2. (1.294)
The dual problem is then
nt 3 [[ gPddt- (Fihr)ae + Al (1209)
feL*(w) Ox(0,T)

If f is the (unique) solution of problem (1.295) the solution u of the
corresponding control problem (1.289) is given by u = ¥xox(o,1), Where ¥

is the solution of (1.294) corresponding to f=f

1.9.4. Dual formulation in the case of Example 1.3.
Let f = {f;}¥, be given in RY. We define ¢ by
8—12}+A*1]1—0' Q @(T)—if‘- v=00on% 1.296
Y =01in Q, —i=1 1915 =0 on X. (1.296)
The dual problem is then (analogous to (1.295) but with L?(w) replaced by
RY):

inf [l// p?dzdt — (f, hr)gs + Bll fllgn |- 1.297
fer™ L2 Ox(O’T)w T (f T)]RN ﬂ”f”RN ( )
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If f is the (unique) solution of problem (1.297) the solution w of the
corresponding control problem (1.289) is given by u = ¥xox(o,r), Where ¢

is the solution of (1.296) corresponding to f = f.

1.9.5. Further comments.
Remark 1.42 We can also consider time averages as shown in Lions (1993).

Concerning now the numerical solution of problem (1.289), it can be
achieved by numerical methods directly inspired by those discussed in Sec-
tion 1.8. In particular, it is quite convenient to introduce an operator
A € L(H,H') which will play for problem (1.289) the role played for prob-
lems (1.109) and (1.114) by the operator A defined in Section 1.5 (see also
Section 1.8.2).

Considering, first, Example 1.2, the dual problem (1.295) can also be
written as

f e L*(w),

(AL, f = Frew) + Bl 2wy = BIfllL2c) (1.298)
> (hr, f = frzw) Vf € L*(w),

where, in (1.298), operator A is defined as follows

Af =p(T)xw Vf € L*(w), (1.299)
with ¢(T") obtained from f via (1.294) and
b “
af +Ap=9PxoinQ, $(0)=0, $=0on¥. (1.300)

Operator A € £(L?(w), L?(w)) and is symmetric and positive definite over
L?(w). The numerical methods discussed in Section 1.8.8 can be easily
modified in order to accommodate problem (1.298).

Consider, now, Example 1.3; the dual problem (1.297) can be written as
{ feRY,
(Af,f — £)pn + Blfllgy — Blfllgy > (hr,f — v VE e RY,

where, in (1.301), A is the N x N symmetric and positive definite matriz
defined by

(1.301)

A = (Nijhicijen,  Aij = /Q(Pi(T)g]‘ dz, (1.302)
with, in (1.302), o; defined from g; by
- 8—87’% + A%, =0in Q, Y(T)=gi, ¥; =0o0n X%, (1.303)
i

5 TAvi = vixon Q@ »i(0) =0, p;=0o0n%. (1.304)
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Remark 1.43 Problem (1.301) clearly has the ‘flavour’ of a Galerkin method
(like those discussed in Section 1.8 to solve problems (1.115) and (1.116)).

To conclude this section we shall discuss a solution method for problem
(1.301); this method is applicable when N is not too large, since it relies on
the ezplicit construction of matrix A. Our solution method is based on the
fact that, according to, e.g., Glowinski, Lions and Trémolieres (1976, Ch.
2) and (1981, Ch. 2 and Appendix 2), problem (1.301) is equivalent to the
following nonlinear system

{ Af + Bp=hr
(P’f)RN = ”f“RNv ”P”RN <1,

which has a unique solution since § > 0. System (1.305) is in turn equivalent
to

(1.305)

{ Af + 8p = hr, (1.306)

p = Pg(p + pf) Vp > 0,

where, in (1.306), Pp : RY — RV is the orthogonal projector from RY on
the closed unit ball B of RY ; we clearly have Vf € RY ,
R f iffeB,
Pg(f) =1 . . U
f/lifllgy if f ¢ B.
Relations (1.306) suggest the following iterative method (of fized point type):
p? € B is given (we can take, for example, p® = 0); (1.307)

then for n > 0, assuming that p" is known, we compute £, and then p"*1,
by

Af" = hr - Bp", (1.308)
p™t! = Py(p™+ pf"). (1.309)

Concerning the convergence of algorithm (1.307)—(1.309) we then have the
following

Proposition 1.2 Suppose that

0<p<2m/B, (1.310)
where y is the smallest eigenvalue of matriz A. Then, Vp° € B, we have
Jim {f,p"} = {f, p}, (1.311)

where {f,p} is the solution of (1.305).

Proof. The convergence result (1.311) is a direct consequence of Glowinski
et al. (1976, Ch. 2) and (1981, Ch. 2 and Appendix 2) (see also Ciarlet
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(1989, Ch. 9)); however, we shall prove it here for the sake of completeness.
Introduce therefore f* = f* — f and p = p™ — p; we have

A" = —pp™. (1.312)

We also have since Pg is a contraction ||p"t!||gn < ||p” + pf™||g~, which
implies in turn that

15" 2

IA

IB™ I3~ + 20(B™, F")gn + P2 IIE" |3~
= 2 m en m
= D" g = (AT + AP . (1313)
It follows from (1.313) that

157 — 1™ I > 2 (AT, Py = 2w > o (252 = o) I

(1.314)
where p;(> 0) is the smallest eigenvalue of matrix A. Suppose that (1.310)
holds, then the sequence {||13"||]%{N }n>0 is decreasing; since it has 0 as a lower
bound it converges to some (nonnegative) limit, implying that

. —n|2 _ jantl)2 —
Jm (1" lgy ~ IP™ lign) = 0. (1.315)

Combining (1.310), (1.314), (1.315) we obtain that lim,—4e0 [E?|[gy = 0;
we have thus shown that lim,_, o f* = f. The convergence of {p™},>¢ to
p follows from the convergence of {f"},>¢ and from (1.308) (or (1.312)).

Remark 1.44 If N is not too large, so that matrix A can be constructed (via
(1.302)—(1.304)) at a reasonable cost, we shall use the Cholesky factorization
method (see, e.g., Ciarlet (1989, Ch. 4)) to solve the various systems (1.308).
If N is very large, we can expect A to be il conditioned and expensive to
construct and factorize; therefore, instead of using algorithm (1.307)-(1.309)
we suggest solving problem (1.301) by simple variants of the methods used
in Section 1.8.8 to solve problem (1.115).

1.10. Pointwise control

1.10.1. Generalities.

A rather natural question in the present framework is to consider situa-
tions where in (1.1) the open set O is replaced by a ‘small’ set, in particular
a set of measure 0. One has then to consider ‘functions’ which are not in
L?(Q) (for a given t).

Many situations can be considered. We confine ourselves here with the
case where O is reduced to a point:

O={b}, beq. (1.316)

Then, if §(x — b) denotes the Dirac measure at b, the state function y is
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given by
% + Ay =v(t)é(zx —b)inQ, y(0)=0, y=0onX. (1.317)
In (1.317) the control v is now a function of ¢ only. We shall assume that
v e L*(0,T). (1.318)

Problem (1.317) has a unique solution, which is defined by transposition,
as in Lions and Magenes (1968). It follows from this reference that, if d <3
one has

y € L*(Q), %% € L*(0,T; H*(Q)), (1.319)
so that
t — y(t;v) is continuous from [0,77] into H~(Q). (1.320)

When v spans L?(0,T),y(T;v) spans a subspace of H~1(2). Let us look
for the orthogonal of (the closure of) this subspace. Let f be given in H} ()
such that

(y(T5v), f) =0 (1.321)

(where (-, -) denotes the duality pairing between H~1(Q2) and H}(Q2)). Let
1) be the solution of

—%—fﬂ*w:om Q, Y(T)=f v=00n%. (1.322)

Then
(W(T;v), f) = /0 b () dt. (1.323)
Remark 1.45 If d = 1, the ‘function’ {z,t} — v(t)6(z — b) belongs to
L*(0,T; H~H(Q));
this property implies in turn that

y € L*(0,T; Hy () N C°(([0,T]; L*(9)), %—f— € L*(0,T; H™'()).

Remark 1.46 If f € H}(Q) the solution 1 of (1.322) satisfies
¥ € L*(0,T; H*(2) N Ho(Q)),
so that, if d < 3, ¥(b,t) makes sense and belongs to L?(0,T) (since the
injection of H2(f2) into C%(Q) is continuous) and (1.323) is valid.
It follows from (1.321) and (1.323) that f belongs to the orthogonal of
{y(T;v)} iff
w(b,t) = 0. (1.324)
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Therefore

y(T; v) spans a dense subset of H~1(Q2) when v spans L2(0,T)
iff b is such that (1.324) implies ¥ = 0. (1.325)
This is a condition on b, as the following section shows.

1.10.2. On the concept of strategic point. Formulation of a control problem.
We assume that

A* = A, A independent of t. (1.326)

We introduce the eigenfunctions and eigenvalues of A (we use here the
fact that Q is bounded), i.e

Awj = Ajw;, wj=0onT, w;j #0. (1.327)
Then (assuming in order to simplify the presentation that the spectrum
is simple)

Zf,wy)wyexp M(T = 1)), (1.328)

where, in (1.328), (-,-) denotes the scalar product of L%(Q).
We shall say that b is a strategic point in § if

w;(b) # 0 Vj. (1.329)
Then (1.324) implies
(f,wj) =0V,

ie. f =0. In this case (1.325) is true iff b is a strategic point.
We assume from now on that (1.325) holds true. We are then looking for
the solution of the following control problem

T
viénbff 3 /0 v? dt, (1.330)
with
Us = {v|v e L*0,T), y(T;v) € yr + SB_1}, (1.331)

where yr is given in H~1(2), where 8 > 0 and where B_; denotes the unit
ball of H~1(Q).
1.10.8. Duality results.

The dual problem is as follows. One looks (with obvious notation) for the
solution of

T ~ A ~
i [ [CG0P - G f) 4 Blflgw]; (8

feH} ()
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where, in (1.332), ¥ is obtained from f via

)
at
The minima in (1.330) and (1.332) are opposite.
If f is the solution of (1.332) then the optimal control u (i.e. the solution
of (1.330)) is given by

+ A% =00nQ, ¥((T)=f, y)=00n%. (1.333)

u(t) = d)(b’ t)» (1334)
where ¥ is the solution of (1.333) corresponding to f = f.

1.10.4. Iterative solution of the dual problem.
From a practical point of view it is convenient to introduce

A € L(HY(Q), H™(Q)

defined by
Af = ¢(T), (1.335)
where, in (1.335), ¢ is obtained from f via (1.333) and
04

Fr Ap =9(b,t)6(z —b)in Q, $(0)=0, $=0o0nL. (1.336)

We can easily show that

T
(AL, fa) = /0 (b, o (b, ) At Y fy, o € HE(S), (1.337)

which implies that operator A is self-adjoint and positive semi-definite; op-
erator A is positive definite if b is strategic.
Combining (1.332) and (1.337) we can rewrite (1.332) as follows

Jint (VAT + B g — m ). (1.338)
feH ()

The minimization problem (1.338) is equivalent to the following varia-
tional inequality

{ f € Hy(),

(Af f = 1)+ BIf s — By 2 (yr, f = ) Vf € HY(Q),
(1.339)
which can also be written as

yr € Af + Boj(f), (1.340)

where 0j(-) is the subgradient of the convex functional j : H}(Q) — R
defined by

itf) = ||f||Hg(Q) vf e Hy(Q).
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As seen in previous sections (particularly Section 1.8.8), to solve problem
(1.340) we can associate the following initial value problem in H}(Q) (with
A = V? the Laplace operator)

2 (—af)+Af+ 80P =ur,

f(0) = fo

with it and integrate (1.341) from 7 = 0 to 7 = +00, to obtain the steady-
state solution of (1.341), i.e. the solution of (1.340).

As in Section 1.8.8, the Peaceman-Rachford scheme is well suited to the
solution of problem (1.341); we then obtain

fO=fo, (1.342)

then for m > 0, f™ being known we obtain f™+1/2 and f™t1 from

(“Af™H2) — (=Af™)
1AT

(1.341)

+ B85 (fmTY2y + Af™ = yp, (1.343)

(_Afm+1) _ (_Afm+1/2)
1AT

+ BO(fm2) 4 AfmT = yr. (1.344)

Problem (1.343) is equivalent to the minimization problem

s (s
- [ vim vide-Sr-arm, Al (1.345)

Problem (1.345) has a unique solution f™+1/2 ¢ H}(Q), which is given by
fmEL/2 — \ml/2 gmtl/2 (1.346)
where, in (1.346),

(i) f7*1/2 is the solution of the Dirichlet problem

m+1/2 c H&(Q),

LV vide = [ vimovide (1347

+—2*<yT ~ Af™ fYVf € HY(Q)

(i.e {1” 2 satisfies —A(f"? — f7) = JAT(yr — Af™) in @, £ =0
onI').
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(ii) A™*1/2 > 0 and is the minimizer over R, of the quadratic polynomial
2 +1/2,2 AT mt1/2
A= X = M2 05 ) + B M o
we then have

AT mt1)2 . 1/2 At
1= B P gy 3 Tl gy ) > B,

)\m+1/2 — A
: m+1/2 T
0, if [|fY 70y < p=
(1.348)
Now, to compute f™*! we observe that (1.343), (1.344) imply
A(fm+1 . 2fm+1/2 + fm) n
- m — A m
e +AfTH = AfT,
ie.
R 2 m+1 m+1 _ m i m+1/2 m
A7_Af +Af =Af A7_A(2f ™). (1.349)
Problem (1.349) is a particular case of the ‘generalized’ elliptic problem
—rAf+Af =g, (1.350)

where ¢ € H™!(Q) and r > 0; the solution of problems like (1.350) will be
discussed in the following section.

1.10.5. Solution of problem (1.350).

1.10.5.1. Generalities. From the properties of operators —A and A (ellip-
ticity and symmetry) problem (1.350) can be solved by a conjugate gradient
algorithm like the one discussed in Section 1.8.2. We think, however, that it
may be instructive to discuss first a class of control problems closely related
to problem (1.330) in which the dual problems are of the same form as in
(1.350).

Let us consider therefore the following class of approzimate pointwise con-
trollability problems

1 k
: 1 2 2
vELn"}E(I)l,J ) [2 ~/0 v 2 ”y( ) yT“ ok ( )

obtained by penalization of the final condition y(T") = yr. In (1.351)

(i) the penalty parameter k is positive;

(ii) the function y is obtained from v via (1.317);

(iii) the ‘function’ yr belongs to H~1(Q);

(iv) the H=1(2)-norm || - ||_1 is defined, Vg € H~1(Q), by
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1/2
lgll—y = Héllﬂg@( - (/Q |V§|2dm) ) with § the solution

of the Dirichlet problem — Aj=gin§}, g=0onT.
(1.352)
Problem (1.351) has a unique solution y which is characterized by the
existence of p belonging to L2(0,T; H*(Q) N H3(2)) such that the triple
{u,y,p} satisfies the following optimality system:

%% +Ay=ub(z—-b)inQ, y=0o0nk, y(0)=0, (1.353)
~—g—]t)+A*p:Oin @, p=0onk, (1.354);
1
—Ap(T) = k(yr —y(T)) in &,
u(t) = p(b, t). (1.355)

Let us define f € H}(2) by f = p(T); it follows then from (1.353)—(1.355)
that f is the solution of the (dual) problem

—kTIAf+ Af =yr. (1.356)

Concerning the solution of problem (1.351) we have two options: we can
use either the primal formulation (1.351) or the dual formulation (1.356).
Both approaches will be discussed in the following two sections.

1.10.5.2. Direct solution of problem (1.351). Solving the control problem
(1.351) directly (i.e. in L?(0,T)) is worth considering for the following rea-
sons:

(i) It can be generalized to pointwise control problems with nonlinear state
equations.

(ii) The space L2(0,T) is a space of one variable functions, even for multi-
dimensional domains Q (i.e.  C R with d > 2).

(iii) The structure of the space L%(0,T) is quite simple making the im-
plementation of conjugate gradient algorithms operating in this space
fairly easy.

Let us denote by J(-) the functional in (1.351); the solution » of problem
(1.351) satisfies J'(u) = 0 where J'(u) is the gradient of the functional J( )
at u. Let us consider v € L?(0,T); we can identify J'(v) with an element of
L?(0,T) and we have

T T
/0 J’(v)wdt:/o (0(t) — p(b, ))w(t) At Yo, w € L2(0,T),  (1.357)
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where, in (1.357), p is obtained from v via (1.317) and the corresponding
adjoint equation, namely

_op
ot

{ p(T) € Hj(%),
—Ap(T) = k(yr — y(T)) in Q.

+A'p=0in@, p=0onX, (1.358);

(1.358),

Writing J'(u) = 0 in variational form, namely

u € L?(0,T),
T

/ J'(wyvdt = 0 Vv € L2(0,T)),
0

and taking into account the fact that operator v — J'(v) is affine with
respect to v (with a linear part associated with an L2(0, T')-elliptic operator)
we observe that problem (1.351) is a particular case of problem (1.121) (see
Section 1.8.2); it can be solved therefore by the conjugate gradient algorithm
(1.122)-(1.129). In the particular case considered here this algorithm takes
the following form:

u® € L?(0,T) is given; (1.359)
solve
dy° 0 0 . 0 0
E-FAy =uwélz—-binQ, y =0o0nX, y(0)=0, (1.360)
then
8p0 * 0 _ . 0 _
5 +A*p' =0 Q, p =0o0nX%, (1.361),
9(T) € HY(Q),
{ P 3; o() s (1.361),
—ApT) = k(yr — y°(T)) in Q,
g% € L*(0,T),
T T o . \ (1.362)
| stwe@d = [ @) - 2k, )0t dt vo € L0, 7),
0 0
and set
0_ 0
w =g°. O (1.363)
Assuming that u™, g", w™ are known, we obtain u™tl, gntl Wt as
follows.
Solve
"

a1 + A" =w"(z —-b)in Q, F =00n %, 7(0) =0, (1.364)
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and then
aﬁn *x-n __ =n __
—E + A p = n Q, p = 0 on 2, (1.365)1
p™(T) € H} (),
P € HY@), L3659,
Ap™(T) = ky™(T) in Q,
and
g € L¥0,T),
T T 1.
/ v dt = / (W(t) — (b, ))o(t) dt Vo € L20,7). (360
0 0

Compute then

T T
Pn =/ |g”|2dt// G w™ dt, (1.367)
0 0
and update u™ and g™ by

u"t =" — pu”, (1.368)
and
g™t = g™ — png", (1.369)
respectively. If 9" | 20,1y /19° 2201y < €, take w = u™*; if not, compute
Y = 9" 2201y /197 20,1 (1.370)
and update w™ by
w't =g . O (1.371)

Don=n+1 and go to (1.364).

A finite element/finite difference implementation of the above algorithm
will be briefly discussed in Section 1.10.6.

1.10.5.3. A duality method for the solution of problem (1.351). Suppose
that we can solve the dual problem (1.356), then from f(= p(T')) we can
compute p, via (1.354); and obtain the control u via (1.355). Problem
(1.356) is equivalent to

f € Hy(),
vt [ V1 Vida+ (Af) = (ur, ) vF € HY@.

From the symmetry, positivity and continuity of A (see Section 1.10.4)
the bilinear form on the left-hand side of (1.372) is continuous, symmetric
and H}(Q)-elliptic (we have indeed

67 [ 1VFP do+ (AF, ) 2 kN iy VS € HYE)),

(1.372)
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problem (1.372) (and therefore (1.351)) can be solved by a conjugate gra-
dient algorithm operating this time in H}(€). This algorithm ~ which is
closely related to algorithm (1.134)-(1.148) - is given by

£ € H}(Q) is given; (1.373)
solve
0
- % +AP" =0 Q, p"=0o0n 3, pX(T)=f°, (1.374)
then
a_yo 0_ .0 : 0 _ 0_
9 + Ay =p'(bt)o(x—-b)in @, y =0o0on X, y =0, (1.375)
¢° € Hy(9),
| V90 Vide =k [ 0f0Vide+ (T) - ur, ) ¥f € HY(@)
Q Q
(1.376)
and set
0_ 0
w =g¢°. O (1.377)
Assuming that f*, g", w™ are known, we obtain u"t, g"*t1 wntl gs
follows.
Solve
3171 * =N . -n - n
——87+Ap =0inQ, p"=0o0n% p™(T)=w", (1.378)
then
8—77.
% +AT = (b, )8(z —b) in Q, §°=0on 3, g°(0)=0 (1.379)
and
g" € Hy(Q),
/ Vi Vids = k—l/ V' -V fdz+ (77(T), f) Vf € HA Q).
Q Q
(1.380)
Compute then
Pn = / |Vgn|? dx// Vg" - Vuw"dz, (1.381)
Q Q
and update f™* and g™ by
il = powt, (1.382)

and
9"t =g" — pu3", (1.383)



334 R. GLOWINSKI AND J.L. LIONS

respectively. If ||g"+1||H6(Q)/||90HH3(Q) <, take f = f*t1; if not compute

7n=/ lVg"+ll2dx// Vg dz (1.384)
Q Q

and update w™ by

w'tl = g™l 4w O (1.385)

Don=n+1 and go to (1.378).

Remark 10.47 Concerning the speed of convergence of algorithm (1.373)-
(1.385) we have (from Section 1.8.2, relation (1.130)) that the number of
iterations necessary to achieve convergence verifies

n <mng~ln %/ln (%_i__i) , (1.386)
where
ve = KT+ A (BT + A) 7Y (with A = (=A)7PA). (1.387)
Since

I T+ A=k AL NG+ A) T =k,
it follows from (1.386) and (1.387) that for large values of k we have
n < ng~ ||A]V2k 2 Ine" /2, (1.388)

Similarly, we could have shown that the number of iterations of algorithm
(1.359)-(1.371) necessary to obtain convergence also varies like k'/2 In ¢~1/2
for large values of k.

From a practical point of view we shall implement finite-dimensional vari-
ants of the above algorithms; these variants will be discussed in the following
section.

1.10.6. Spacetime discretizations of problems (1.330) and (1.351).
1.10.6.1. Generalities. We shall discuss in this section the numerical so-
lution of the pointwise control problems addressed in Sections 1.10.2 to
1.10.5. The approximation methods to be discussed are closely related to
those which have been employed in Section 1.8, namely they will combine
time discretizations by finite difference methods to space discretizations by
finite element methods. Since the solution to the control problem (1.330)
can be reduced to a sequence of problems such as (1.351), we shall focus our
discussion on this last problem.

1.10.6.2. Approzimations of control problem (1.351). We now employ the
finite element spaces Vj, and Vp, defined as in Section 1.8.4 (the notation of
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which is mostly kept) we approximate control problem (1.351) as follows.

min JPY(v), (1.389)
veRN

where, in (1.389), we have At = T/N,v = {v"})_; and

At Y k
B =SS /Q Vel |? dz, (1.390)
n=1

with )Y obtained from v via the solution of the following discrete parabolic
problem:

v =0, (1.391)
then for n =1,..., N, assuming that y,':_l is known, we solve
yr € Von,
n_ n-l (1.392)
/ %—Zih——zh dz + a(yp, zn) = v"2x(b) Vzi, € Vo,
Q At
and finally
QhN € VOha

1.393
/ Vol .V, de = (yr — yf, zn) Van € Vop. ( )
Q

Problems (1.392) (for n = 1,...,N) and (1.393) are well-posed discrete
Dirichlet problems (we recall that a(z1,29) = (Az1, 29) Vz1, 20 € HL(Q)).

The discrete control problem (1.389) is well posed; its unique solution —
denoted by uft = {u"}_, - is characterized by

VJAH (udh) =0, (1.394)
where, in (1.394), VJAt denotes the gradient of JAt.

Remark 1.48 The convergence of us, and of the corresponding state vec-
tor, to their continuous counterparts is a fairly technical issue. It will not be
addressed in this article. On the other hand, we shall address the solution of
problem (1.389), via the solution of the equivalent linear problem (1.394);
this will be the task of the following Sections 1.10.6.3 and 1.10.6.4.

Remark 1.49 The approximate control problem (1.389) relies on a time
discretization by an implicit Euler scheme. Actually, we can improve accu-
racy by using, as in Section 1.8.6, a second-order accurate two-step implicit
time discretization scheme. By merging the techniques described in the
present section and in Section 1.8.6 we can easily derive a variant of the ap-
proximate problem (1.389) relying on the above second-order accurate time
discretization scheme.
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1.10.6.8. Iterative solution of the discrete control problem (1.389). I: Cal-
culation of VJA*. In order to solve via (1.394) the discrete control problem
(1.389), by a conjugate gradient algorithm, we need to know VJhAt(v) Vv €

RY. To compute VJAY(v), we observe that

IRV + 6w) — JRH(v)

= (VJPHV), w)as Vv, w e RV, (1.395)

i Z
640
where
N
(v, W)ae = At S o"w" Vv, w € RY  (and |[v]ac = (v, )X}).
n=1
Combining (1.390)-(1.393) and (1.395) we can prove that
N
(VIRHV), w)ae = At Y (o™ — pp(b))w" ¥v,w € RY, (1.396)

n=1

where the family {p7}2_, is obtained as the solution to the following adjoint
discrete parabolic problem:

p T = koY (1.397)
then, forn = N,...,1, assuming that th+1 s known, solve (the well-posed
discrete elliptic problem)

Ph € Vo,
/Q E%tl—zh dz + a(zp,ph) =0 Yz, € V. (1.398)

Owing to the importance of relation (1.396), we shall give a short proof of
it (of the engineer/physicist type) based on a (formal) perturbation analysis:
Hence, let us consider a perturbation év of v; we have then, from (1.390),

§IRHV) = (VIRHV), 6v)a:
N
= AtY V6" +k / VoY . Vol dx (1.399)
Q
n=1
where, in (1.399), 6®1 is obtained from év via
5y =0, (1.400)
then forn =1,..., N, we have
6y)7: € V0h7

Syp — Sy~ 1.401
[ o+ oSk, 28) = 60724 (5) V2 € Vi, (1.401)
Q
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and finally

6®5 € Von,

1.402
/ V6<I>{LV -Vzpdr = —/ 6y;jlvzh dx Vzn € Vop. ( )
Q Q

Taking z, = p} in (1.401) we obtain, by summation fromn =1ton =N,

N
5
ALY pR(b)so™ AtZ/ O = yh p dx+AtZ (Sy2, pT)

n=1 n=1

= /pN“(Syévdw

n+1
+At [/ b —ap Ourdz a(éyh,ph)] .(1.403)

Since {p}}) ! satisfies (1.397), (1.398), it follows from (1.403) that

N
/ ph syl daz = At Z pr(b)év™. (1.404)
Q

n=1

Taking z, = @} in (1.402), we obtain from (1.397)
k/ val . vl do = —k/ syl e dz = —/Qp;;’“éy};’ dz,

which combined with (1.399) and (1.402) implies

N
(VIR V), 6V)ar = Z m_ pR(b))é (1.405)

Since év is ‘arbitrary’, relation (1.405) implies (1.396).

1.10.6.4. Iterative solution of the discrete control problem (1.389). II: Con-
Jugate gradient solution of problem (1.389), (1.394). The discrete control
problem (1.389) is equivalent to a linear system (namely (1.394)) which is
associated with an N x N symmetric and positive definite matrix. Such a
problem can therefore be solved by a conjugate gradient algorithm which is
a particular case of algorithm (1.122)-(1.129) (see Section 1.8.2) and a vari-
ant of algorithm (1.169)—(1.183) (see Section 1.8.5). This algorithm takes
the following form:

up = {ul}_,1s given in RY; (1.406)
take then
yg =0, (1.407)
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1

and, assuming that yy~" is known, solve forn=1,...,N,
yo € Vo,
no_ -l 1.408)
/ Mzh dz + a(yg, zn) = ugzr(b) Vzn € Von. (
Q At
Solve next
(I)(I)V € Vbha
(1.409)
/ V@év -Vzpdx = (yr - y(j)v,zh) Yz, € Von.
Q
Finally, take
it = kol (1.410)
and, assuming that p(')hLl is known, solve forn=N,...,1
6 € Von,
n_ et (1.411)
/ u—zh dz + a(zp,py) = 0 Vz, € Vo
o) At
Set
go = {uf —pp(»)}n =1 (1.412)
and
Wo = 8o- (1.413)

Then for m > 0, assuming that um,, g, and W, are known compute
Wm+1,EBm+1 and W41 as follows.

Take
70 = 0; (1.414)
assuming that §7 ! is known, solve forn=1,...,N
Ym € Von,
g = Tmi Y . (1.415)
Y = Um sz + a(gl, 2n) = wlzn(b) Van € Von.
Q At
Solve next
Ol € Von,

- 1.416
/ V) Vzpdz = —(gh, 2n) Vzn € Von. (1.416)
0

Finally, take
Pt = ko), (1.417)
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and, assuming that ! is known, solve forn =N,...,1
P € Von,
— pntl (1.418)
/ P pm 2 dx + alzp, p) = 0 Vzp € Vo
Set
&m = {wh, — P (®)}nr- (1.419)
Compute
2
(gma wm)At
and update u,, and g, by
Umil = Um — PrmWn, (1.421)
gm+1 = &m — PmBm, (1.422)
respectively. If |lgm+1llat/|lgollar < € take uft = u™+; else, compute
m = 1gm+1llac/lgmlAe (1.423)
and update w,, by
Wm+l = Bm+1 + YmWm. O (1'424)

Dom =m+1 and go to (1.414).

Remark 1.50 Algorithm (1.406)—(1.424) is a discrete analogue of algorithm
(1.359)—(1.371).

1.10.6.5. Approzimation of the dual problem (1.356). It was shown in Sec-
tion 1.10.5 that there is equivalence between the primal control problem
(1.351) and its dual problem (1.356). We shall discuss now the approxima-
tion of problem (1.356). There is no difficulty in adapting problem (1.356)
to the (backward Euler scheme based) approximation methods discussed in
Sections 1.8.3 to 1.8.5 for the solution of problem (1.116). Therefore, to
avoid tedious repetitions we shall focus our discussion on an approximation
of problem (1.356) which is based on a time discretization by the two-step
backward implicit scheme considered in Section 1.8.6 (whose notation is
kept); for simplicity, we shall take H = h and Ey, = V.
We approximate the dual problem (1.356), (1.372) by

fAt € Von,

VR Videt [ (AR Fade = (ur, fu) Vi € Vin,
? ? (1.425)
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where, in (1.425), AhAt denotes the linear operator from Vy into Vyp defined
as follows

P fy = 2Nt - g, (1.426)
where, to obtain cﬁh and gaN 2 we solve forn =N —1,...,1, the well-
posed discrete elliptic problem

¥ € Von,
3 N 2 n+1 n+2 R (1427)
/ 1Yk = ¢A %% zndx + a(zn, ¥) = 0 Vzp, € Vop,
O t
with
O =2fn, O =4f, (1.428)
then, with ¢ = 0,
@Ilz € V0h7
oL — @9 A
[ P da + a(38h + 108, 20) = BEA(B)2n(0) Y € Vi,
(1.429)
and, finally, forn =2,...,N — 1,
P € Von,
San 1 _ An 1 w .
R ondz + a(@, 1) = DR ()2 (b) Yan € Vin.
(1.430)
It follows from (1.426)—(1.430) that (with obvious notation)
N-1
[ AR fada = ALY UROWE®) Vi, f2 € Von
n=1

i.e. operator A2 is symmetric and positive semi-definite, which implies in
turn that the approximate dual problem (1.425) has a unique solution.

Remark 1.51 The discrete problem (1.425) is actually the dual problem
of the following discrete control problem (a variant of problem (1.389); see
Section 1.10.6.2):

min JAY(v), (1.431)
veR¥™!

where, in (1.431), we have v = {o" N_l and

N-1
Jit(v) =348t Y ") + 1k/ Ve de, (1.432)

n=1

with @) obtained from v via the solution of the following discrete parabolic
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problem
yd =0, (1.433)

yill € VOh,

=9l (1.434)

A+ o+ duh, ) = 30T20(0) Van € Vo,

1

then, for n = 2,..., N — 1, assuming that ;" is known we solve

yg S V0h1
3.0 _ 2 n— n—2
/ = yhAt Yhy da + alyf, 2n) = V"2 () Van € Von,
Q
(1.435)
and finally
@{lV € VOha
(1.436)

AV@{:’ -Vzpdx = (yT — th + y’IlV 2, h) Vzn € Von.

Back to problem (1.425), it follows from the properties of operator A5
that this problem can be solved by the following conjugate gradient algo-
rithm (which is a discrete analogue of algorithm (1.373)—(1.385); see Section
1.10.5.3):

fo € Vor is given; (1.437)
take
Py = 2fo,py Tt = 4fo, (1.438)

and solve forn =N —1,...,1 the following discrete elliptic problem

pg € Von,
_gpntl |y 1pnt2 (1.439)
/ = pAt iLe zr dx + a(2n,pg) = 0 Yz, € Vop.
o)
Take now
% =0, (1.440)
and solve
Y5 € Von,
(1.441)

1_,0
/Q yoAtI‘Io zn dz + a(2yd + 1y, 21) = 2p3(b)2n(b) Vzn € Vou;
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solve next, forn=2,...,N — 1,
yo € Vo,
gn_2n—1+_1_'n—2 .
/Q W0 20 T, da -+ afyf, ) = PR(D)2(b) Van € Von
(1.442)
Solve, next
go € Vo,
/ Vgo-Vfdr= k‘l/ Vfo Vfdz (1.443)
0 0
+<2y(])V_1 - y(ij_Z - yva) Vf € ‘/Ohv
and set
wo = go. O (1.444)

Then for m > 0, assuming that f,, gm,wn are known compute fonii,
Im+1, Wm+1 6s follows.

Take
ﬁyNn = 2'u_)m’ —x-i—l = 4wm (1445)

and solve forn =N —1,...,1

Pm € Von,
3pn _ opntl 4 1,n+2 (1.446)
/ P~ Pm T iPm o 4o + a(en, B,) = 0 Van € Vo
Iy) At
Take
7y = 0; (1.447)
solve
I € Von,
Ui — Un 1 1
[ 2R e do + a3k + $5h 20) = 38R (B)2n(D) Ve € Vo,
(1.448)
and then forn=2,...,N -1
g?n € VOhv
ggn _ 9gn—1 15n—2
/Q = th LoV do+ a(Tm» 2n) = P (b)zn(b) Vzn € Vop.

(1.449)
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Solve next
gm € VOha

_ Fdy — =1 f
[ V9nVidz =kt [ Vun Vide (1.450)

+/ (2N~ — gN-2)fdz Vf € Vgu,

and compute

m = /Q |V gm|? dx//Qng - Vwp, dz; (1.451)

then update f,, and g, by
fm+1 = fm — pmWm, (1.452)
gm+1 = gm — PmGm, (1.453)

respectively. If lgm+1llzycay/ N9oliycay < € take SR = fmys, else compute

7m=/ Ing+1|2dx// |V gm|* dx (1.454)
Q Q

and update w,, by
Wmtl = Im+1 + YmWm. O (1.455)
Dom =m+1 and go to (1.445).

Algorithm (1.437)—(1.455) is fairly easy to implement. It essentially requires
elliptic/finite element solvers to compute the solutions to problems (1.439),
(1.441)—(1.443), (1.446), (1.448)-(1.450); such solvers are easily available.

1.10.7. Numerical experiments

1.10.7.1. Generalities. Synopsis. In order to illustrate the results and meth-
ods from Sections 1.10.1 to 1.10.6 we shall discuss in this section the solution
of some pointwise control problems; these problems will be particular cases
and variants of the penalized problem (1.351). We suppose for simplicity
that d = 1 (i.e. @ C R); it follows then from Remark 1.45 that the solution
of (1.317) satisfies

y € GO0, T); L*(9),
which implies that, in (1.351), it makes sense to replace ||y(T) — yr|l-1
by {l¥(T) - yrllL2(q). Also, for some of the test problems we shall replace

%fOT |v|? dt by (1/s) f(;‘r |v|® dt, with s > 2, including some very large values
of s for which the optimal control u (in fact, its discrete analogue) clearly
has a bang-bang behaviour; this is expected from Section 1.7.
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1.10.7.2. First test problems. What we have considered here is a family
of test problems parametrized by T, yr, k£ and by the ‘support’ b of the
pointwise control. These test problems can be formulated as follows.

i J) R 1.456
e k(v) (1.456)
where
T korl
Jo(v) = %/ v2dt+§/ 9(T) — yrl? da, (1.457)
0 0
with y the solution of the following diffusion problem
Jy %y .
= g = - 1 T .
5 " Va2 v(t)é(x — b) in (0,1) x (0,T), (1.458)
y(0,4) = y(1,1) = 0 on (0,T), (1.459)
y(0) = 0. (1.460)

In equation (1.458) we have v > 0 and b € (0,1). We clearly have = (0, 1).
We have considered, first, test problems where the target function yr is
even with respect to the variable x — 1. These target functions are given by

yr(z) = 4z(1 — ), (1.461)
Be-1) i<z<i,
yr(z) = 8(3-=) ifj<z<y, (1.462)
0 elsewhere on (0,1),
1 ifl<z<s,
= 1.463
yr(a) { 0 elsewhere on (0,1), ( )

respectively. We have taken v = % in equation (1.458), and T = 3 for all
the three target functions we have given above. The continuous problem
(1.456)-(1.460) has been approximated using the methods described in Sec-
tions 1.10.6.2 to 1.10.6.4 (i.e. we have solved directly the control problems,
taking into account the fact that for these test problems we use a penalty
term associated with the L? norm, instead of the H~! norm used in the
general case). The time discretization has been obtained using the backward
Euler scheme described in Section 1.10.6.2 with At = 1072, while the space
discretization was obtained using a uniform mesh on (0,1) with A = 1072,
The discrete control problems have been solved by a variant of the conjugate
gradient algorithm (1.406)—(1.424); we have taken ug = 0 as initializer for
the above algorithm and ||gm|lat/||golla: < 107 as the stopping criterion
(for those cases for which this criterion could not be reached sufficiently
quickly, we stopped iterating after a fixed number of iterations (300 or 500,
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Table 1. Summary of numerical results (target function defined by (1.461);
T=3 h=At=107"2)

Number of
. . ly*(T)—yrll .2
* L<(0,1
b k iterations  [lu*||z2(0,1) _é_lllyﬂm(o,l)
V2/3 102 95 0.923 6 x 1072
108 > 300 1.14 2.3 x 1072
104 > 300 1.28 1.4 x 102
1/2  10? 93 0.909 5.5 x 1072
10° > 300 1.09 2.1 x 1072
104 > 300 1.20 1.3 x 1072
/6 102 95 0.918 5.9 % 102
103 > 300 1.12 2.3 x 1072
104 > 300 1.26 1.4 x 1072

depending on the test problem)). The corresponding numerical results have
been summarized in Tables 1 to 3, where v* and y*(T") denote the computed
optimal control and the corresponding final state, respectively.

In Figures 1 to 9 we have visualized, for k = 10%, the computed optimal
control and compared the corresponding computed value of y(T') (i.e. y*(T))
to the target function yr.

The above results deserve several comments:

(i) Since operator A = —vd?/dz? is self-adjoint for the homogeneous
Dirichlet boundary conditions we can apply the controllability results of
Section 1.10.2. The eigenfunctions of operator A, i.e. the solutions of

d2

are clearly given by

wj(z) =sinjrz, j=12,...,

the corresponding spectrum being {VTerQ}j:o?. Since each eigenvalue is stm-

ple, b will be strategic if
sinjmb#£#0Vj=1,2,...,
ie. if

b¢ (0,1)NnQ (1.464)



346 R. GLowiINSKI AND J.L. LIONS

Table 2. Summary of numerical results (target function defined by (1.462);
T=3,h=At=1072)

Number of
. ) " (T)—vrll 2
* L2(0,1)
b k  iterations  ||u*||z2(0,T) ———J_Ilyrllu(o.n
Vv2/3 102 157 1.23 2.2 x 1071
108 > 500 1.93 1.9 x 10!
104 > 500 3.01 1.8 x 107!
1/2 102 113 1.27 1.1 x 1071
103 > 500 1.74 6.3 x 10~2
104 > 500 2.03 5.6 x 1072
/6 102 137 1.24 1.9 x 1071
103 > 500 1.82 1.6 x 10!
104 > 500 2.72 1.5 x 107!

Table 3. Summary of numerical results (target function defined by (1.463);
T=3 h=At=1072)

Number of
e ly* (D)=y7ll2 0.
* .
b k iterations  |[u*|| 20,7 ”yT“L:(::)(O :
V2/3 10 279 0.94 3.47 x 107!
103 > 500 2.2 3.13x 107!
104 > 500 3.0 3x 107!
1/2 102 317 1.0 3.25 x 107!
103 > 500 2.6 2.79 x 107!
104 > 500 3.6 2.64 x 107!
/6 102 291 0.96 3.4x107!
103 > 500 2.3 3x 1071

10* > 500 3.2 2.9x 1071
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(A)
15 r r - r r

05 1 1.5 2 25 3

0.8 / J

yr, ¥(T)

T
(B)

Fig. 1. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.461): T =3, b= /2/3, k =10% h = At = 1072).
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0.8+ 1

yr, y(T)

0.4} b

00 0.2 0.4 0.6 0.8 1

T

(B)

Fig. 2. (a) Variation of the optimal control and (b) comparison between y7 and
y*(T) (target function (1.461): T =3,b=1/2, k = 10%, h = At = 1072).
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0.8r

yr, y(T)

0.4f

0.2f

0.2 0.4 0.6
T

(B)

0.8

349

Fig. 3. (a) Variation of the optimal control and (b) comparison between yr and

y*(T) (target function (1.461): T =3, b=n/6, k = 10*, h = At = 1072?).
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(A)
12 T ; r T r

yr, y(T)

Fig. 4. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.462): T =3, b = v/2/3, k = 104, h = At = 1072).
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(A)
12 T . T . .

101 J

yr, y(T)

Fig. 5. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.462): T =3,b=1/2, k = 10%, h = At = 1072).
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(A)

T T

12 T T

YT, y(T)

Fig. 6. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.462): T =3,b=7/6, k = 10%, h = At = 107?).
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Fig. 7. (a) Variation of the optimal control and (b) comparison between yr and

y*(T) (target function (1.463): T = 3, b= v2/3, k = 10*, h = At =1072))
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Fig. 8. Variation of optimal control and (b) comparison between yr and y*(T)

o ——————

(target function (1.463): T =3,b=1/2, k =10% h = At = 1072).
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(A)
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1.2 T T T T T
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0.6r

yr, y(T)
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Fig. 9. Variation of the optimal control and (b) comparison between yr and y*(T")
(target function (1.463): T =3, b=n/6, k = 10*, h = At = 1072).
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where, in (1.464), Qis the field of the rational real numbers. Clearly, b =
v/2/3 and b = 7/6 being nonrational are strategic. On the other hand, b = 1
is far from being strategic since sin jm/2 = 0 for any even integer j; indeed,
b = L is generically the worst choice which can be made. However, if one

takes b = L the solution y of problem (1.458)-(1.460) satisfies
Vt € [0,T],y(t) is an even function of z — 1; (1.465)

property (1.465) implies that the coefficients of w; in the Fourier expansion
of y are zero for j even. This property implies in turn that b = 1 is strategic
if yr is also an even function of x — 1; this is precisely the case for the
target functions defined by (1.461)-(1.463). Actually, for target functions
yr which are even with respect to x — 1, b = 1 is the best strategic point;
this appears clearly in Tables 1 to 3 where the smallest control norms and
controllability errors are obtained for b = 1. In Section 1.10.7.3 we shall
consider target functions which are not even with respect to z — 1; b = 1
will not be strategic at all for these test problems.

(ii) A digital computer ‘knows’ only rational numbers; this means that
for the particular test problems considered in this section, strictly speaking,
there is no strategic point for pointwise control. However, if b is the computer
approximation of a nonrational number, the integers j such that bj are also
integers are very large. This last property implies that, unless h is extremely
small and yr quite pathological (i.e. its Fourier coeflicients do not converge
quickly to zero as j — +0o0), such a b is strategic in practice.

(iii) The discrete control problems approximating (1.456) are equivalent
to linear systems associated with an N x N symmetric and positive-definite
matrix (we recall that N = T'/At). These problems can be solved, therefore,
by conjugate gradient algorithms. From the classical properties of conjugate
gradient methods (see, e.g., Ciarlet (1989), Golub and Van Loan (1989)),
we expect convergence in N iterations at most. Looking at Tables 1 to 3
we observe that for k sufficiently large this finite termination property does
not hold. The main reason for this behaviour is that these discrete control
problems are badly conditioned for large values of k, implying high sensitivity
to round-off errors and, consequently, loss of the finite termination property.

An alternative to conjugate gradient methods is to construct the ma-
trix and right-hand side of the equivalent linear system and to solve it by
Cholesky’s method. Let us briefly evaluate the cost of constructing the ma-
trix and the right-hand side of this linear system. It follows from Section
1.10.6.3 that to construct the matrix (respectively the right-hand side) we
need to solve N (respectively 1) discrete forward parabolic problems and
then N (respectively 1) discrete backward parabolic problems, implying a
total of 2(INV + 1) parabolic problems. If one modifies yr, with everything
else staying the same, we only have to compute the corresponding new right-
hand side at the cost of solving two discrete parabolic problems.
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Table 4. Summary of numerical results (target function defined by (1.466);
T =3, h=At=10"2).

lly"(T)—yrllL2(0.1)

b k HU*”LZ(O,T) lyrliLz(0,7)
V2/3 108 42.4 1.5 x 107!
105 73.6 4 x 1072

12 10t 4.4 3.5x 107!
10° 5.46 3.5 x 107!

/6 108 40.4 1.8 x 107!
10° 84.5 5.6 x 1072

1.10.7.83. Further test problems The test problems in this section are still
defined by (1.456)—(1.460) the main difference being that the target functions
yr are not even with respect to the variable x — 1. Indeed, the two target
functions considered here are defined by

yr(z) = ¥#2*(1 - z), (1.466)
and
O on [07 %]7
yr(z) =4 8(z—1) on[i,3] (1.467)

8(1—2z) on [21];

we have taken T = 3 for both target functions. The approximation and
solution methods being those of Section 1.10.7.2, still with v = L, h =
At = 1072, we have obtained the results summarized in the Tables 4 and 5
and Figures 10-15 below (the notation is the same as in Section 1.10.7.2).

These results clearly show that b = 1 is not strategic for the test problems
considered here; this was expected since none of the functions yr is even with
respect to x — 1. On the other hand, ‘small’ irrational shifts, either to the
right or to the left of 1, produce strategic values of b. The other comments
made in Section 1.10.7.2 still hold for the examples considered here.

1.10.7.4. Test problems for nonquadratic cost functions. Motivated by Sec-
tion 1.9 we have been considering pointwise control problems defined by

vegggni%llvuism,ﬂ + klly(T) = yrll}a0.1)s (1.468)
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(A)

T T T T T

100 1

3.5} / 5 ]

2.5+ E

yr, y(T)
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Fig. 10. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): T =3, b= v/2/3, k =10% h = At = 1072).
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Fig. 11. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): T =3,b=1, k=105 h = At = 1072).
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(A)

—1 T Y Y T

3.5r 4

2.51 \ E

yr, y(T)

Fig. 12. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466); T =3, b=7/6, k = 10°, h = At = 1072).
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(A)
80F " y T

yr, y(T)

Fig. 13. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.467): T =3, b=+/2/3, k = 10%, h = At = 1072).
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(A)
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Fig. 14. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.467): T =3,b= 4, k=10% h = At =107%).



EXACT AND APPROXIMATE CONTROLLABILITY 363

(A)

0 0.5 1 1.5 2 2.5 3

yr, y(T)

Fig. 15. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.467): T =3, b=7/6, k= 10% h = At =1072).
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Table 5. Summary of numerical results (target function defined by (1.467);
T=3,h=At=10"2),

. ly" (M) —vrll 2.1
b ko flwtllzzom oo
V3/3  10° 6.53 5.2 x 1071
104 21.8 3x 107
105 41.6 1.6 x 10_1
12 10° 2.05 7.1x 107!
10 2.67 7.1 x 1071
105 6.26 7.1 x 10_1
7['/6 103 5.99 6.7 X 10_1
10 27.5 4.2 x 107!
105 57.6 2 x 1071

with y still defined from v by (1.458)—(1.460), and s ‘large’. It seems, un-
fortunately, that for s > 2, problem (1.468) is poorly conditioned implying
that the various iterative methods we used to solve it (conjugate gradient,
Newton and quasi-Newton methods) have failed to converge (or even worse,
have stuck on some wrong solution). From these facts it is quite natural to
consider the variation of problem (1.468) defined by

1 T
veg}%gﬂ [;/0 lo(8)[° dt + klIy(T) = yrllZ2(01y | (1.469)
with y defined from v as above. The cost function in (1.469) has better
differentiability properties than the one in (1.468).

Let us denote by u the solution of (1.469); assuming that b in (1.458)
is strategic we can expect that for s fixed y(u;T) will get closer to yr as
k increases. If, on the other hand, k is fixed we can expect the distance
from y(u;T) to yr to increase with s, since in that case the relative im-
portance of the term s~! fOT |v|* dt in the cost function increases with s.
These predictions are fully confirmed by the numerical experiments whose
results are shown below. For these experiments we have used essentially
the same approximation methods as in Sections 1.10.7.2 and 1.10.7.3, with
h = At = 1072, and taken b = v/2/3, T = 3, v = L and yr defined by
(1.466). The discrete control problems have been solved by quasi-Newton’s
methods a la BFGS, like those discussed, for example, in the classical text
book by Dennis and Schnabel (1983) (see also Nocedal (1992)); for the prob-
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lems considered here, these methods appear to be much more efficient than
conjugate gradient methods.

On Figures 16 to 21 we have — for £k = 107 and s = 2, 4, 6, 10, 20, 30 -
visualized the computed optimal control u* and compared the corresponding
final state y*(T) with the target yr. From these figures, we clearly see that
the distance of y*(T') to yr increases with s; we also see the bang-bang
character of the optimal control for large values of s.

Finally, on Figures 22 to 25 we have shown some of the results obtained
for large values of s and very large values of k; comparing these with Figures
16 to 21 we observe that if for a given s we increase k, then y*(T") gets closer
to y(T') and ||u*|| L2 (o,r) increases, which makes sense. We observe again that
for very large values of s the optimal control is very close to bang-bang.
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Fig. 16. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =2, T =3, b= /2/3, k =107, h = At = 1072).
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Fig. 17. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =4, T =3, b=+/2/3, k =107, h = At = 1072).
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Fig. 18. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =6, T =3, b=v2/3, k =107, h = At = 1072).
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Fig. 19. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =10, T =3, b= v2/3, k = 107, h = At = 1072).
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Fig. 20. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =20, T =3,b=+?2/3, k=10", h= At = 1072).
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Fig. 21. (a) Variation of the optimal control and (b) comparison between yz and
y*(T) (target function (1.466): s =30, T =3, b= v/2/3, k = 107, h = At = 1072).
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Fig. 22. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =6, T =3, b= v2/3, k =2 x10°, h = At =
1072).
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Fig. 23. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s =6, T =3, b= v2/3, k =2 x 10°, h = At =

1072).
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Fig. 24. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s = 20, T = 3,b = v/2/3, k = 10°%, h = At = 10~2).
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Fig. 25. (a) Variation of the optimal control and (b) comparison between yr and
y*(T) (target function (1.466): s = 30,7 = 3,b=/2/3,k = 10%°, h = At = 1072).
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